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Abstract 

Natural selection has imbued biological agents with motivations moving them to act for survival 

and reproduction, as well as to learn so as to support both. Artificial agents also require 

motivations to act in a goal-directed manner and to learn appropriately into various memories. 

Here we present a biologically inspired motivation system, based on feelings (including emotions) 

integrated within the LIDA cognitive architecture at a fundamental level. This motivational 

system, operating within LIDA’s cognitive cycle, provides a repertoire of motivational capacities 

operating over a range of time scales of increasing complexity. These include alarms, appraisal 

mechanisms, appetence and aversion, and deliberation and planning. 
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1. Introduction 

Cognitive architectures model minds, which are thought of as control structures for autonomous 

agents (Franklin, 1995, p. 412). An autonomous agent is a system situated within, and a part of, 

an environment that senses that environment and acts on it, over time, in pursuit of its own 

agenda, and so as to affect what it may sense in the future (Franklin & Graesser, 1997). Given 

this definition, how can the agenda of an autonomous agent be implemented in a cognitive 

architecture? How does such agenda arise from basic cognitive processes? In other words, what 

motivates an agent to choose one action over another, or to choose any action at all? What is its 

motivation to act? How is this motivation to act accomplished? These are the foundational 

questions we address in this work on artificial motivations.  

Motivation is a broad term guiding everything from simple reflex actions to decade-long 

career commitments. We discuss an assortment of motivational processes covering a range of 

temporal scales, and having varying complexity. We focus primarily on motivation based on 

feelings. Several researchers have addressed this topic to date (Bach, 2009; Canamero, 2003; 

Franklin & Ramamurthy, 2006; Gmytrasiewicz & Lisetti, 2002; Lang & Davis, 2006; Sloman & 

Croucher, 1981). Here we present a motivational system, based on feelings, and integrated within 

the broad systems-level LIDA cognitive architecture (Franklin et al., 2016) at a fundamental 

level; this is an approach to motivation in the entirety of cognition. It is biologically inspired but 

does not aim to model the neuroscience side of human or animal motivation per se. However, we 

hold that only by building upwards from solid conceptual primitives can we provide precise 

systems-level explanations of such complicated phenomena. Our goal is to be able to do so.  

James and Lange pioneered early emotions research (as summarized in Cannon, 1927). More 

recently, Picard’s seminal work on “affective computing” (1997; 2003) motivates much current 

research concerned with artificial emotions in computer systems. Fellous (2004) suggests 

focusing on the functions of emotions rather than what they are. He argues that one of the main 

functions of emotions is to achieve “the multi-level communication of simplified but high impact 

information,” and that it may be crucial to understand emotions as “dynamical patterns of 

neuromodulations, rather than patterns of neural activity.” Given that LIDA’s perceptual nodes, 

including those for “emotions” (see Section 3.6) are hypothesized to correspond to particular 

basins of attraction in the dynamics of neuron populations (Franklin, Strain, Snaider, McCall, & 

Faghihi, 2012), feeling nodes in LIDA (see Section 3.2) can be viewed as being close to Fellous’ 

vision. Cañamero (1997) produced an autonomous agent with basic drives and an action selection 

mechanism modulated by its “emotions.” Almost all cognitive architectures have motivation 

mechanism(s). For instance, SOAR (Laird, J, Newell, & Rosenbloom, 1987) has explicit goals, 

and an impasse mechanism that creates sub-goals for complex tasks. More recently emotions 

have been integrated into SOAR (Marinier, Laird, & Lewis, 2009), and used to drive 

reinforcement learning (Marinier & Laird, 2008), but not as motivators. The role of emotions in 

cognition has also been studied in ACT-R, including its affect on rationality (Fum & Stocco, 

2004), decision-making (Belavkin, 2001b), and the “inverted U” effect (Belavkin, 2001a). 

Some cognitive architectures have sophisticated motivational mechanisms. For example, 

CLARION uses a bipartite motivational representation where “explicit goals”, e.g. finding food, 

are generated based on past and current “internal drive states”, e.g. being hungry (Sun, 2009). 

Another architecture with a rich motivational mechanism is Psi (Dorner & Hille, 1995) and its 

progeny Micro-Psi (Bach, 2009). Psi distinguishes between demands, urges, motives, cognitive 

modulators, affect, and directed emotions. The Psi model provides inspiration for some of the 

concepts in the expanded motivation model we are here adding to LIDA.  
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To be clear, the LIDA cognitive architecture consists of the conceptual LIDA model and one 

or more computational LIDA frameworks, which individually facilitate the development and 

computational implementation of various LIDA-based agents. At any point in time, the current 

LIDA model can be found in the most recent summary paper (for example, Franklin, et al., 2016), 

together with more specific details in earlier publications, and with conceptual additions from 

newer papers such as this one. A LIDA framework is a computational system that expedites the 

development of various LIDA-based agents, by providing simplified beginning computational 

versions of most of the LIDA modules. Currently, there is one operational LIDA framework 

(Snaider, McCall, & Franklin, 2011). LIDA-based agents come in two varieties, those that 

perform real world tasks (Franklin, Kelemen, & McCauley, 1998), and those that simulate 

psychological experiments. All LIDA-based agents must include basic versions of critically 

important LIDA modules. However, not every LIDA module in the conceptual model need be 

included in every LIDA-based agent. But, every part of the conceptual LIDA model is 

computationally implementable in theory. 

The organization of the rest of the paper is as follows. We present a brief overview of the 

LIDA model (Section 2). Next, we discuss a series of concepts critical to describing the role of 

motivation within LIDA in preparation for the expanded motivational system to be added here. 

(Section 3). Section 4 describes the fundamental expanded motivational mechanisms in the LIDA 

model. Section 5 is concerned with how feelings, including emotions, modulate learning in 

LIDA. More complex motivational mechanisms are described in Section 6.  

2. The LIDA Architecture and its Cognitive Cycle  

The LIDA architecture is grounded in the LIDA cognitive cycle. Every autonomous agent 

(Franklin & Graesser, 1997), be it human, animal, or artificial, must frequently sample (sense) its 

environment and select an appropriate response (action). Sophisticated agents, such as humans, 

process (make sense of) the input from such sampling in order to facilitate their action selection 

(Hoffman, Singh, & Prakash, 2015). The agent’s “life” can be viewed as consisting of a continual 

sequence of these cognitive cycles. Each cycle consists of three phases, an understanding phase, 

an attending phase, and an action selection/learning phase. It is commonly referred to as the 

action-perception cycle (Dijkstra, Schöner, & Gielen, 1994; Freeman, 2002; Fuster, 2004; 

Neisser, 1976). A cognitive cycle can be thought of as a cognitive “moment.” Higher-level 

cognitive processes are composed of many of these cognitive cycles, each a cognitive “atom”. 

 Just as atoms have inner structure, the LIDA architecture includes a rich inner structure for 

its cognitive cycles (Baars & Franklin, 2003; Franklin, Baars, Ramamurthy, & Ventura, 2005; 

Franklin, et al., 2016). During each cognitive cycle a LIDA agent first makes sense of its current 

situation as best as it can, by updating its representation of both external (coming through the 

external senses) and internally generated features of its outer and inner world. This is the 

understanding phase of the cycle. By a competitive process (described below), it then decides 

what portion of the represented situation is most in need of attention, that is, is most salient. This 

portion is broadcast to the rest of the system, making it the current contents of consciousness. 

This is the attending phase. The contents of a broadcast facilitate the recruitment of internal 

resources, that is, potential actions, from which the action selection mechanism chooses. It also 

enables learning in all the available memories (see Figure 1). This is the action selection/learning 

phase.  
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Figure 1. The LIDA Cognitive Cycle Diagram. 

 

Figure 1 shows this highly parallelized processing in more detail. It starts in the upper left 

corner and proceeds roughly clockwise. The cycle begins with sensory stimuli from sources in the 

agent’s external and internal environment being interpreted in Sensory Memory (e.g., the iconic 

buffer). Low-level feature detectors in Sensory Memory begin the process of making sense of the 

incoming stimuli. Next, Perceptual Associative Memory (PAM) processes these low-level 

features, recognizing higher-level features, such as objects, categories, relations, actions, feelings,  

events, situations, etc. When recognized preconsciously1, these entities comprise the current 

percept, which enters the Workspace asynchronously. Here a preconscious model of the agent’s 

current situation, termed the Current Situational Model, is continually assembled (updated). This 

percept and items from the Current Situational Model serve to cue transient episodes (Conway, 

2001; Franklin, et al., 2005) and declarative memories (autobiographical and semantic). 

Responses to the cue consist of local associations, which may include remembered events and 

relevant facts that were associated with the various elements of the cue. Contents of Spatial 

Memory serve to flesh out events from the episodic memories. In addition to the current percept 

and the Current Situational Model, the Workspace contains the Conscious Contents Queue, a 

queue of the recent contents of consciousness (Franklin, et al., 2016). 

 

 
1 In the LIDA architecture preconscious representation is currently not conscious, but has the potential to become 

conscious (Franklin & Baars, 2010). 
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An updated version of the Current Situational Model (CSM) is assembled from the percepts, 

the associations, and the undecayed parts of the previous model. This assembling process will 

typically require structure-building codelets.2 These are small, special-purpose processors, each of 

which has some particular type of structure it knows how to build. These codelets continually 

monitor the Workspace for opportunities to fulfill their particularly specified task. They may 

draw upon recognition memory, the Conscious Contents Queue, and even Sensory Memory to 

enable the recognition of relations and situations. The newly assembled model constitutes the 

agent’s best understanding of its current situation within its world. This completes the 

understanding phase for this cognitive cycle.  

For an agent operating within a complex, dynamically changing environment, the contents of 

the Current Situational Model (CSM) may be much too large for the agent to cope with all at 

once. It needs to selectively attend to a salient portion of the CSM. Portions of the CSM compete 

for attention. These portions take the form of coalitions of structures from the CSM. Such 

coalitions are formed by special-purpose attention codelets, whose function is to bring certain 

structures of concern to the particular attention codelet into the Global Workspace (hence the 

name Global Workspace Theory (Baars, 1988)). The most salient (important, urgent, insistent, 

novel, threatening, promising, arousing, unexpected, bright, loud, moving, etc.) coalition wins the 

competition. In effect, the agent has decided on what to attend to at the moment. The contents of 

the winning coalition are then broadcast globally, bringing its contents to consciousness and, 

thereby, completing the attending phase of the cycle. Thus, the architecture’s functional 

consciousness mechanism acts as an attention filter. The purpose of all this attentional processing 

is twofold, first to help the agent choose what to do next, and second to select what to learn into 

each of its several memories. Learning and action selection take place concurrently in LIDA. We 

will describe action selection first, and learning later in Section 5. 

Though the contents of this conscious broadcast are available globally, a primary recipient is 

Procedural Memory, which stores templates of possible actions including their contexts and 

possible results. It also stores an activation value for each such template that attempts to measure 

the likelihood that an action taken within its context will produce the expected result. Templates 

whose contexts sufficiently intersect the contents of the conscious broadcast instantiate specified 

copies of themselves. These instantiated copies are bound to the specifics of the current situation. 

Instantiated templates remaining from previous cycles may also continue to be available. These 

instantiations are next processed by the Action Selection mechanism, which chooses a single 

action from one of these instantiations. The selected action then goes to Sensory-Motor Memory 

where it is executed by an appropriate algorithm (motor plan) (Dong & Franklin, 2014; Franklin, 

et al., 2016). The action taken affects the environment, and thus completes that cognitive cycle. 

In the LIDA architecture, all cognitive processing takes place via a continual iteration of such 

cognitive cycles. While it is tempting to imagine each cognitive cycle as a distinct, temporally-

disjoint “atom” in a sequence of such atoms, this conceptualization is not strictly true. Due to the 

asynchronous and parallel nature of most of LIDA’s processes, phases from consecutive 

cognitive cycles can overlap; for example, the action phase from one cycle and the understanding 

phase from the next cycle can occur simultaneously. The serial nature of consciousness, which is 

necessary to maintain a stable, coherent interpretation of the world, emerges from the 

synchronous operation of the Global Workspace. Action selection is also synchronous, enabling 

the well-ordered execution of sequences of actions. Apart from the Global Workspace and Action 

 

 
2 In the LIDA architecture, the term codelet refers generally to any small, special-purpose processor or running piece of 

computer code. Codelets correspond to processors in Global Workspace Theory (Baars, 1988) 
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Selection modules, all other LIDA processes operate asynchronously (that is, without the benefit 

of a system clock to “synchronize” their operations). This generally asychronous mode of 

processing is one of LIDA’s conceptual commitments (Franklin, Strain, McCall, & Baars, 2013).  

2.1 Event Representation in LIDA  

A recent development in the LIDA model involves the representation of events (Zacks, Speer, 

Swallow, Braver, & Reynolds, 2007; Zacks & Tversky, 2001). Previously, events were 

represented by an action node, a perceptual symbol, with thematic-role links connected to role-

filling nodes (McCall, Franklin, & Friedlander, 2010). More recently we suggest maintaining the 

use of action nodes with thematic roles; however, an additional more abstract event node should 

be added encompassing the action node and its roles, and representing the entirety of the event 

(Franklin, et al., 2016). For example, suppose the event “Charles takes the pen” is recognized in 

PAM, and becomes part of the current percept. Then it should appear in the Current Situational 

Model of the Workspace as shown in Figure 2 

With this representation it is clear how events can be recreated by passing activation “top-

down” from the event node. Furthermore, since the single event node effectively encapsulates the 

entire event, the event can become a part of a higher-level structure in a straightforward manner. 

For example, a link between two event nodes can express a temporal relationship between the two 

events. For the purposes of this paper we will assume that learned or newly recognized events, 

while involving several nodes, are effectively encapsulated, and can be referenced by their event 

node. 

  

 
 

 
Figure 2. The representation of the recognized event “Charles takes a pen.” Double-headed arrows 

indicate bidirectional information passing. The labels are for illustrative purposes and play no role in 

LIDA’s dynamics. 

2.2 Scheme Representation in LIDA 

LIDA’s Procedural Memory serves as a critical bridge from the motivational primitives 

introduced in this paper to action selection. Procedural Memory provides long-term storage of 
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ideas of what to do in various circumstances. Each such datum is called a scheme, inspired by 

Drescher’s schema mechanism (1991). A scheme in LIDA, referred to as a template in Section 2 

above, consists of a “context” and a “result” along with an “action,” which connects to “an 

appropriate network in sensory-motor memory” (D'Mello, Ramamurthy, Negatu, & Franklin, 

2006). A scheme also maintains a base-level activation, and, when instantiated as a behavior, a 

current activation as well. The current activation measures “the relevance of the scheme to the 

current situation (environmental conditions, goals, etc.),” while its base-level activation is an 

estimate of “the likelihood of the result of the scheme occurring as a result of taking the action 

within its context” (D'Mello, et al., 2006). 

3. Motivational Concepts and the Role they Play in LIDA 

This paper is devoted to a detailed description of how motivation is to be constructed within the 

LIDA conceptual model. In previous conceptual work, we gave only abstract accounts of using 

feelings as the basic motivators (for example, Franklin, et al., 2016 Section 4.8) or arguments that 

their use could be consistent with appraisal theory (Franklin, Madl, D’Mello, & Snaider, 2014). 

Likewise, most of our agent implementations lacked explicit motivations (for example, Madl et 

al., 2011; Madl & Franklin, 2012; Faghihi, McCall, & Franklin, 2012), and those that did include 

motivational constructs, such as feelings or emotions, implemented them in a simplistic way (for 

example, Ait Khayi & Franklin, 2018). Bear in mind that the LIDA model, as a systems-level 

model, is intended to be able, in principle, to model the entirety of human cognition. Motivational 

mechanisms are not added with specific tasks in mind.  

In this section we provide several definitions related to motivation by other researchers, and 

then explain how each concept is implemented within the LIDA conceptual model. We hope to 

bridge LIDA to existing concepts related with motivation in order to facilitate comparison with 

existing work. We do not intend to offer LIDA as a comprehensive model of motivation and 

emotion, but rather as a useful tool for thinking about motivation and emotion, and as a possible 

architecture for implementing them in software agents.  

3.1 Homeostatic Receptor 

Biological agents use homeostatic control mechanisms to regulate their internal environment, 

keeping internal variables within stable ranges (Cannon, 1929). More recently they have been 

used to implement drives in robots (Breazeal, 1998). Each homeostatic control mechanism has at 

least three interdependent components for the variable being regulated. The receptor is the 

sensing component that monitors and responds to changes in the internal environment. When the 

receptor senses a stimulus, it sends information to a “control center,” the component attempting 

to keep the variable within a stable range. The control center then sends signals to effectors, 

which can be muscles, organs, or other structures, that receive signals from the control center 

(Marieb & Hoehn, 2007). Therefore, homeostatic receptors are sensors that detect the value of 

critical attributes in an agent’s bodily state. Examples of these in humans include sensors for low 

levels of oxygen or glucose in the blood. The detection of low oxygen and/or high carbon dioxide 

in the body sends a signal to the brain (control center). From this point, the brain must interpret 

the signal. Such interpretation gives rise to a feeling of, for example, the need to breathe more 

rapidly. A sensor may be implemented in many ways, for instance, with distributed inputs from 

all over the body or by taking inputs from a localized bodily region. 
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In the LIDA conceptual model, homeostatic sensors are implemented as sensors, and are 

considered to be a part of Sensory Memory (see Fig. 1). A particular feature detector begins the 

control process detecting an incoming internal stimulus, and activating an associated feeling node 

in Perceptual Associative Memory. The control center concept is effectively described throughout 

the rest of this paper including the aforementioned mechanisms of LIDA’s cognitive cycle. 

3.2 Feelings 

Damasio viewed feelings as somatic markers (Damasio, 1999), the perception of a certain state of 

the body along with the perception of a certain mode of thinking, and thoughts with certain 

themes (Damasio, 2003). Franklin and Ramamurthy (2006) also adopted this view writing:  

 

Feelings in humans include hunger, thirst, various sorts of pain, hot or cold, the urge to 

urinate, tiredness, depression, etc… One feels feelings in the body. Implemented 

biologically as somatic markers, feelings typically attach to response options and, so, bias 

the agent’s choice of action…Feelings, including emotions, are nature’s means of 

implementing motivations for actions in humans and other animals. They have evolved 

so as to adapt us to regularities in our environments. These general preferences derived 

evolutionarily from regularities can be viewed as values. Thus feelings become 

implementations of values in biological agents, providing a common currency for quick 

and flexible action selection. 

 

We adopt this notion of feelings for this work. Feelings are implemented as PAM nodes in 

the LIDA conceptual model. They always have exactly one valence sign, either positive or 

negative. We distinguish two types of feeling nodes: 

 

 1) Drive feeling nodes, each representing a drive of the agent  

 2) Interpretive feeling nodes, each representing a perceptual interpretation of a stimulus 

 

The former is a representation of a current internal state of the agent’s body, independent of the 

current external environment, while the latter is the agent’s evaluation of a stimulus regardless of 

whether it is external or internal to the agent. For example, a “hungry” feeling node represents a 

drive, and has negative valence sign, while a “satiated” feeling node also represents a drive but 

with positive valence sign. A “sweet” feeling node represents a perceptual interpretation of some 

stimulus with positive valence sign, while a “bitter” feeling node is similar, but with negative 

valence sign. Intuitively, one may be hungry or satiated in a variety of external situations, and one 

may interpret a variety of different stimuli as sweet or bitter. 

3.3 Affective Valence 

Affective valence is the hedonic niceness or nastiness (“liking” versus “disliking”) of reward or 

aversion that is essential to emotions (Berridge & Kringelbach, 2008). For LIDA, we propose that 

each feeling node has a valence sign, having either a positive or negative value. With a positive 

value, the sign stands as the agent’s basic representation of niceness or liking, while a negative 

value represents basic nastiness or disliking. For example, the feeling node “thirst” would have a 

negative valence, while the feeling node “relief-from-thirst” would have a positive valence. A 
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feeling node’s valence sign plus its current activation specifies its affective valence, with the 

activation representing the degree of “liking” or “disliking.”  

Like all PAM nodes, feeling nodes must be activated from a sensory stimulus to be 

instantiated in the Workspace. Said in another way, feature detectors in the feeling node’s 

receptive field must detect features of the sensory stimulus. Either by direct recognition enabled 

by earlier perceptual learning, or by close temporal association, feeling nodes may become part of 

preconscious event representations in the Workspace. Such events will be referred to as feeling 

events, a distinction likely true of most all events. The affective valence of a feeling event is the 

sum of the affective valence of its feeling nodes. The feeling node can be aptly thought of as a 

feature of the event. This suggests that recalled or imagined feeling events may involve a non-

zero degree of affective valence. By having different feeling nodes carrying positive or negative 

affective valence, it is also possible to both like and dislike the same event structure. This can 

happen when two feeling nodes with positive and negative affective valence respectively become 

part of the same event structure. 

3.4 Liking vs. Wanting and Disliking vs. Dreading 

Kringelbach and Berridge (2009)  distinguish “wanting” from “liking.” By analogy, “dreading” 

should be distinguished from “disliking.” “Wanting” is an objective hedonic reaction, measured 

behaviorally or neurally. Core “liking” reactions result from activity in identifiable brain systems 

that paint hedonic value on a sensation such as sweetness (Berridge & Kringelbach, 2008). There 

is evidence of separate neural representations for wanting and liking (Smith, Berridge, & 

Aldridge, 2011). Dread appears to be the opposite of wanting or desire, as neurotransmitters in 

the nucleus accumbens have been shown to modulate whether the area generates desire (wanting) 

or dread (Richard & Berridge, 2011).  

Incentive Salience. Incentive salience is a motivational “wanting” attribute of stimuli, 

transforming the representation of a stimulus into an object of attraction. This “wanting” is unlike 

“liking” in that liking is produced by a pleasure immediately gained from consumption or other 

contact with stimuli, while the “wanting” of incentive salience is the motivational magnet quality 

of a stimulus that makes it currently a desirable and attractive goal, transforming it from a mere 

sensory experience into something that commands attention, induces approach, and increases the 

likelihood of its being sought out (Berridge & Robinson, 1998).  

Roughly, stimuli have incentive salience, i.e., are “wanted,” only if they have been previously 

“liked.” However, it has also been demonstrated in biological agents that physiological signals, 

e.g., hunger, are integrated with a stimulus’ incentive salience (Tindell, Smith, Berridge, & 

Aldridge, 2009). Thus, overall incentive salience is adaptable, as its learned component is 

modulated by current physiological signals, a view originally articulated by Bindra (1978)  and 

Toates (1986), and later referenced in the incentive salience model (Berridge & Robinson, 1998).  

Inspired by all of this, we include incentive salience as a distinct scalar attribute of event 

nodes including base-level3 and current components. This attribute is similar to, but separate 

from, node activation. Activation represents a node’s salience, which may involve relevance, 

importance, urgency, insistence, novelty, unexpectedness, loudness, brightness, motion, etc. 

 

 
3 PAM is recognition memory, and a PAM node having some base-level incentive salience is not sufficient for 

recognition. However, base-level incentive salience is a fundamental attribute of nodes, and, as such, is considered a 

part of PAM.  
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While activation represents an event’s situational salience, incentive salience represents the value 

the agent currently places on the event actually occurring. Our version of incentive salience has it 

range from a positive value, (e.g. 1), where it represents the degree that an event is “wanted,” to a 

negative value, (e.g. -1), representing the degree of aversion to the event occurring. Just as a 

node’s total activation is a function of its base-level activation (learned usefulness) and current 

activation (Franklin, et al., 2016), a node’s total incentive salience combines its base-level 

incentive salience and current incentive salience. Base-level incentive salience is modified in 

perceptual learning (see Section 5.2); events gain incentive salience by being associated with 

feelings with positive affective valence. Likewise, they lose incentive salience when associated 

with feelings having negative affective valence. Current incentive salience is determined, in part, 

by activated feeling nodes that are connected to events by incentive salience links (see Section 

5.5). Additionally, current incentive salience may come from expected future events (see Section 

6.4). Both the total activation and the total incentive salience of an event contribute to its salience, 

making it more likely to come to consciousness. 

3.5 Option 

An option for action (option) (Keller & Ho, 1988; Klein, Wolf, Militello, & Zsambok, 1995; 

Raab, de Oliveira, & Heinen, 2009; Ward, Suss, Eccles, Williams, & Harris, 2011) is an action 

representation an agent can select for execution. It is a candidate for action or a “choice 

alternative” (Kalis, Kaiser, & Mojzisch, 2013). 

So far, we have discussed feeling events, events with one or more associated feeling nodes. 

Feeling events have an overall affective valence, which is based on the aggregate affective 

valence(s) of the feeling node(s) associated with (linked to) the event. We have also proposed that 

events could have incentive salience. In fact, we hypothesize that most every event will involve 

some feelings and some non-zero amount of incentive salience. Events in PAM can have base-

level incentive salience; however, they do not have current incentive salience before coming to 

the Workspace.  

Given this, we define a virtual event as an event that is instantiated without the presence of its 

corresponding sensory signature from the agent’s sensors. For example, recalled episodic 

memories, plans, imaginings, options, and hallucinations are all virtual events. Next, we define an 

option to be an instantiated virtual event in the Workspace with some non-zero total incentive 

salience. Thus, options are unique in that their salience is based on an event’s total incentive 

salience, and, possibly, the event’s activation (e.g., from stimuli) as well. Options can be thought 

of as possible “choices” that have not yet been made. When an option helps instantiate a scheme 

that is likely to bring it about, that is, a behavior with the option for its result, and if such a 

behavior is selected, then the option becomes an immediate goal. Given that a behavior stream is 

a stream of behaviors that can be thought of as a partial plan of action, we define a pending goal 

as an option that is a part of an instantiated behavior stream, one of whose behaviors has been 

selected, but the underlying event cannot be immediately achieved.  

3.6 Emotion 

The usage of the term “emotion” has been imprecise and, for many researchers, the concept is not 

easily definable (Alvarado, Adams, & Burbeck, 2002; Thompson & Madigan, 2007). Various 

definitions of emotion have been given, and very important functions have been attributed to 

emotion; however, there is currently no consensus for any one definition. Some well-known work 
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on emotions specifies six basic emotions: surprise, fear, disgust, anger, happiness, and sadness 

(Ekman, Sorenson, & Friesen, 1969). They are particular to individuals (Picard, 2003), and 

influence cognition directly (Phelps, 2006; Squire & Kandel, 2000). More recently some 

researchers deny that there is anything “basic” about these six (Camras, 2011). Westen (1999)  

describes emotions as a mix of several biochemical, sociocultural, and neurological factors. 

Purves et al. (2008) divide emotions into three processes: 1) a behavioral action (e.g., escape), 2) 

a conscious experience of an event or situation (e.g., regret or shame), 3) a physiological 

expression (e.g., paleness, blushing, palpitations, uneasiness). It is not specified how these three 

processes are related. Diener (1999)  suggested that a theory of emotions should account for 

several components: 1) subjective experience (how it feels to be in an emotional state), 2) 

physiological processes (neural, neurochemical and physiological mechanisms that facilitate 

emotion), 3) expressive behavior (facial and bodily expression, movement patterns, the 

modulation of voice and breath etc.), and 4) cognitive evaluations.  

The LIDA model does not address subjective experience; rather its consciousness is only 

postulated to be functional4 (Franklin, 2003). While “cognitive evaluations” are addressed in the 

next section, the physiological and expressive aspects of emotions are beyond the scope of this 

current work. 

It is our view that emotions exist only within the context of an organism, or an agent. It is a 

feeling about something or someone that is an emotion. For example, the emotion of feeling sad 

because one has suffered a loss, or the emotion of feeling angry at someone because they interfere 

with something you want to do. We adopt such a definition of emotion for the LIDA model 

(Franklin & Ramamurthy, 2006):  

 

Emotions, such as fear, anger, joy, sadness, shame, embarrassment, resentment, regret, 

guilt, etc., are taken to be feelings with cognitive content (Johnston, 1999). One cannot 

simply feel shame, but shame at having done something. The something done constitutes 

the cognitive content. 

 

A feeling node in PAM would represent shame. A currently active event node, the cognitive 

content, with the shame node, within the Workspace would constitute an instance of the emotion 

shame. Once again, such an emotion may, or may not, come to consciousness. Shame, of course, 

may come in multiple varieties, each represented by its own node. Note that every emotion is a 

feeling, but there are feelings, e.g. thirst or a pain, that need not be emotions. Thus emotions 

constitute a subset of feelings. 

3.7 Appraisal 

Appraisal theory is described as providing a cognitive interpretation of what we sense or perceive 

(Lazarus, 1991). Moreover, this theory explains our evaluation of specific external 

(environmental) or internal (within ourselves) stimuli that give rise to emotions. Roseman and 

Smith (2001)  explained how human motives and goals play an important role for the evaluation 

 

 
 4 Global Workspace Theory, which LIDA implements and fleshes out, is a high-level theory of the role of 

consciousness in cognition. It assumes that phenomenal consciousness occurs in conjunction with each conscious 

broadcast. Wishing to apply our LIDA model to both biological and artificial agents, the model remains agnostic on the 

question of phenomenal consciousness. 
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of a specific situation. Lazarus (1991) identified two appraisal methods: 1) primary appraisal, for 

the organism to determine the importance and/or meaning of an event, and 2) secondary 

appraisal, for the organism to determine whether or not it can manage or handle the event and its 

consequences.  

Lazarus also discusses two types of appraisal models: the structural appraisal model and the 

process model. The structural model has three components: 1) a relational aspect, involving the 

person-environment interactions, 2) a motivational aspect, involving the assessment of a current 

situation’s relevance in relation to one’s current goals, and 3) a cognitive aspect involving one’s 

appraisal of the situation. Accordingly, one’s evaluation of the situation leads to specific 

emotions. 

The process model suggests that person-environment interactions might go through an 

appraisal-coping-reappraisal cycle (Lazarus, 1991), For example, imagine a father becomes angry 

(appraisal) after hearing of his daughter’s disobedience. He then has a heated argument with her 

(coping). Later on, he may feel guilty about his behavior during the argument (reappraisal), 

which, in turn, may lead to an apology (coping). This, finally, leads to a feeling of satisfaction at 

having apologized (reappraisal). However, the process model of appraisal fails to account for 

automatic emotional response, a fast and direct pathway for action in critical situations. We will 

discuss how this occurs in the LIDA model in detail in Section 4.1 below on alarms.  

In LIDA model terms, appraisal is an initially preconscious process that occurs automatically 

with perception, but may also involve episodic and semantic recall, imagination, and 

consciousness. For this work, we consider the appraisal process as one that evaluates a situation 

(event) along dimensions such as novelty, goal-alignment, agency, coping potential, and 

availability of a plan, thereby determining the activation level of relevant feeling nodes. In this 

sense the appraisal process culminates in the attachment of one or more activated feeling nodes to 

the cognitive content, typically an event, producing a corresponding emotion. This is typically 

accomplished in LIDA’s Workspace by the preconscious association of an event and the 

emotion(s) activated during the event’s appraisal. Such association is performed by structure-

building codelets concerned with particular appraisal dimensions. The attachment of the feeling 

node(s) modulates the current activation of the event. If this newly appraised structure, including 

the feeling node(s) is brought to consciousness, this emotion, this feeling event, is learned into 

PAM (long-term recognition memory). Once learned, emotions, like other feelings can be 

recognized in PAM without additional appraisal. Often times the appraisal of emotion is a multi-

cyclic affair requiring at least several cognitive cycles. However, we hypothesize that the initial 

appraisal of emotion can also occur during a single LIDA cognitive cycle. 

3.8 Reinforcement Learning 

Reinforcement learning (RL) is a form of machine learning in which software agents learn to 

optimize their behavior through trial-and-error exploration of their environments. Agents choose 

actions based on their beliefs about their environment’s current state, and then observe the 

subsequent states and rewards following the execution of those actions. Rewards are formulated 

as scalar values, where the rewards with the greatest numerical value are the most desirable. In 

general, this reward signal serves as a proxy for the fulfillment of an agent’s goals, and any 

sequence of actions that maximizes the expected total reward accumulated by an agent can be 

interpreted as an optimal solution for achieving those goals. Note that with respect to the 

application of reinforcement learning in LIDA agents (and autonomous agents in general), all 
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“rewards” are derived from that agent’s perceptions rather than an external reward signal; more 

specifically, they are determined based on the activation of built-in motivational structures. If an 

agent’s perceptions include appraisals with positive affective valence, that is, if an event is liked, 

then the presence of that affective valence can be viewed as a positive “reward” with a value 

proportional to the magnitude of the affective valence. 

In many cases, an agent’s actions may not directly result in an immediate reward, but, 

instead, contribute to the acquisition of future rewards. These delayed rewards result in a credit-

assignment problem where partial credit should be attributed to actions that contributed to 

eventual rewards. Without the assignment of partial credit to these unsung supporting actions, an 

agent’s behavior will tend to be myopically focused on immediate gratification. Many 

reinforcement learning algorithms solve this credit assignment problem by introducing explicit 

value (or utility) functions; for example, functions that approximate the expected cumulative 

reward associated with a given state or action taken from that state. These approximations are 

conditioned on the assumption that the agent behaves as it did in the past (or, more precisely, that 

the agent follows the same behavioral policy). Value functions are used as the basis for many 

popular model-free RL algorithms; for example, Q-learning (Watkins, 1989) and Deep Q-

Networks (Mnih et al., 2015).  

In the context of cognitive science, Lucantonio, Stalnaker, Shaham, Niv, and Schoenbaum 

(2012) described model-free learning as “a set of reinforcement learning methods that use 

prediction errors to estimate and store scalar cue or action values from experience” (p. 360). 

These stored values represent the predicted total reward an agent expects to receive if an action or 

cue were pursued. The name “model-free” is based on the fact that actions are evaluated and 

selected using these stored values, without the need for an internal model of the environment. 

Lucantonio et al. characterized such a decision strategy as “simple but inflexible” because “the 

values are simply scalar numbers, separated from the identity of the expected future outcomes 

themselves or the specific events that will ensue en route to obtaining the outcomes” (p. 360). 

Furthermore, these values do not immediately change if the outcomes change (e.g., a cue, 

typically followed by a reward, suddenly begins to lead to a punishment). Instead, the values must 

be gradually relearned through repeated experience and prediction error-based updates. Due to 

this inflexibility, many have suggested that model-free decision making underlies habitual 

behavior (Fishbach, Roy, Bastianen, Miller, & Houk, 2005; Lucantonio, et al., 2012). 

In Section 5.3 of this paper, we introduce a new model-free motivational learning mechanism 

based on temporal-difference learning. The cached values updated by this learning mechanism 

are the base-level incentive saliences of event nodes, which are modified during conscious 

learning. These learned base-level incentive salience values support LIDA’s consciously 

mediated action selection (among other things), which is a form of model-free decision making in 

which actions are selected for execution based primarily on the total activation and incentive 

salience of their corresponding instantiated schemes (see Section 2.2). The term “consciously 

mediated action selection” refers to the fact that conscious access is required for this mode of 

action selection; however, actions are chosen impulsively and without the benefit of deliberative 

thought. For example, based solely on consciously mediated action selection, an agent having an 

“open-the-refrigerator-door” event node with a strong positive base-level incentive salience may 

habitually open the refrigerator door when hungry, even when the refrigerator is empty, because 

this event has historically led to the consumption of food—an event with positive incentive 

salience. 
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An alternate approach to reinforcement learning, referred to as model-based RL, learns 

internal models that predict the effect of an agent’s actions on its environment, and uses those 

models in service of decision making. In the context of cognitive science, Lucantonio, Stalnaker, 

Shaham, Niv, and Schoenbaum (2012) describe model-based learning as “a set of reinforcement 

learning methods in which an internal model of the environment is learned and used to evaluate 

available actions or cues on the basis of their potential outcomes” (p. 360). Unlike model-free 

learning, which is based on cached values, model-based learning methods evaluate and select 

actions by simulating their consequences, and choosing the most desireable predicted outcomes. 

This approach is computationally expensive, but flexible, allowing rapid adaptations to an agent’s 

behavior given an accurate and up-to-date model of the agent’s environment. It was suggested by 

Lucantonio et al. that goal-directed behavior relies on model-based learning. 

In LIDA’s Workspace, the Current Situational Model (CSM) contains relevant portions of the 

agent’s current model of its environment, and its beliefs about its current environmental state.  

Over multiple cognitive cycles, LIDA agents may mentally simulate the results of possible 

actions, or entire action plans, and the total incentive salience associated with those outcomes 

may be used to bias the outcome of LIDA’s volitional (deliberative) action selection (Franklin, 

2000). Section 6 describes volitional action selection in more detail, and, in particular, describes 

how the motivational constructs introduced in this paper (such as incentive salience) can be used 

in support deliberation and model-based control. 

4. Single-Cycle Motivational Processes in LIDA 

In Section 3, we introduced several motivational enhancements to LIDA’s conceptual model. In 

this section, we describe how they can influence LIDA’s single-cycle processes. Most 

mechanisms make a trade off between speed and the amount of memory brought to bear on the 

situation. This makes each best suited for particular situations; however, implemented together in 

an integrated architecture they provide a flexible set of faculties well-suited for a range of 

situations.  

To help frame this section, we first present two distinctions used in LIDA. The first is a 

distinction between levels of conscious access. LIDA identifies three levels of conscious access 

of mental processes or representations: 1) Never conscious means unable to ever become 

conscious, 2) Preconscious means potentially, but not currently, conscious, and 3) Conscious 

means it is part of the content of a conscious broadcast (Dehaene, Changeux, Naccache, Sackur, 

& Sergent, 2006; Franklin & Baars, 2010). LIDA also distinguishes between four types of action 

selection: volitional, consciously mediated, automatized, and alarm. In volitional (deliberative) 

action selection (decision making) much of the selection process itself is conscious, that is, a part 

of successive contents of consciousness (Franklin, 2000). Consciously mediated action selection 

may occur in each of LIDA’s cognitive cycles, when a never-conscious selection process consults 

the current contents of consciousness during its choosing of the next action (Franklin & Baars, 

2010; Franklin, et al., 2012). Automatized action selection occurs when one action calls the next 

via a never-conscious process, and without use of the current contents of consciousness (Franklin, 

et al., 2012; Negatu, 2006). Finally, we discuss action selection during an alarm in the next 

section. 
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4.1 Alarms 

In dangerous situations or during certain athletic occasions, agents must react as quickly as 

possible. The notion of “alarms” was previously articulated in the context of agent architectures 

by Sloman (1998)  and enjoys neuroscientific support (LeDoux, 2006; Liddell et al., 2005). In 

terms of the LIDA model, an alarm situation (alarm) is one where an agent instantiates a scheme, 

selects its action, and executes an associated motor plan in rapid succession in response to a 

dangerous or athletic event prior to, or simultaneous with, consciousness of the event. This would 

correspond to an action selection and execution before (or while) the event is brought to 

consciousness by attention codelets. For example, an alarm occurs with the unconscious turning 

of a car’s steering wheel in response to suddenly being cut off by another vehicle, or a 

professional baseball batter swinging at a pitch. During an alarm, some part(s) of the Current 

Situational Model in the Workspace directly instantiates a scheme from Procedural Memory. The 

ensuing behavior is sufficiently activated for the immediate selection of its action and, in close 

succession, the execution of an associated motor plan. All of this occurs before, or simultaneously 

with, consciousness. Note that alarms require the existence of some learned or built-in scheme. 

They also require that a scheme be strongly “activated.” Here, we suggest the activation and the 

incentive salience both play a role in the rapid recruitment of scheme(s) during alarms. Note that 

every alarm directly instantiates a scheme before it can come to consciousness. However, later or 

simultaneously, an agent can become conscious of the situation causing the alarm, and of the 

action it took in direct response to the alarm. After an action is taken during an alarm situation, 

the result will likely come to consciousness and become involved in the procedural learning for 

the scheme selected and executed during the alarm. (LeDoux, 2006; Liddell, et al., 2005; Sloman, 

1998) 

4.2 Motivational Effects of Feeling Nodes 

The presence of activated feeling nodes, be they drive feelings or interpretive feelings, in a LIDA 

agent’s Workspace has several motivational effects. Feelings and emotions are part of the cue to 

Transient Episodic and Declarative Memory (Franklin & Ramamurthy, 2006) as well as to 

LIDA’s nascent Spatial Memory (Madl, Franklin, Chen, & Trappl, 2013). The resultant local 

associations can contain records of the agent’s past feelings and emotions in associated situations. 

Present and past feelings and emotions influence the competition for consciousness in each 

cognitive cycle, by affecting the activation of structures in the Current Situational Model, as well 

as the activation of coalitions containing such structures, strengthening a coalition’s chances of 

winning the competition for consciousness. This implies conscious content can include affective 

portions, and play a role in conscious learning (see Perceptual Associative Memory Learning 

below). If modeling human performance, then affect should modulate learning following an 

inverted U curve according to the Yerkes-Dodson law (Yerkes & Dodson, 1908): increasing 

affect causes increased learning up to a point, after which more affect results in less learning. 

4.3 Incentive Salience of Nodes Contributes to Motivation 

We have proposed that event nodes in PAM have a base-level incentive salience while their 

current instantiations in the Current Situational Model additionally have a current incentive 

salience. The total incentive salience of events contributes to the salience of events, and as a 

result, can play several roles within a single cognitive cycle. A coalition involving events with 
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high incentive salience is more likely to win the competition for consciousness, and become the 

object of conscious learning. If broadcasted, events having a large incentive salience better recruit 

schemes from Procedural Memory, and can instantiate more salient behaviors, increasing their 

likelihood of selection. This influence of incentive salience on action selection is akin to the 

influence of “goals” on behaviors in Maes’ behavior network model of action selection (Maes, 

1989). 

4.4 Action Selection and Consciousness 

The LIDA model distinguishes action selection from motor plan selection. The former is the 

selection of a behavior (an instantiated scheme) from Procedural Memory, while the latter is the 

selection of an instantiated motor plan template from Sensory-Motor Memory in the service of 

action execution. Procedural Memory is built using structures originating in Perceptual 

Associative Memory, i.e., it is a grounded representation. This implies that it may be primed 

preconsciously, allowing for preconscious priming of actions. Does this suggest that action 

selection occurs without consciousness? The answer is that there can be several possibilities: The 

unconscious selection of alarms can occur with a sudden, strong instantiation of a learned scheme 

that leads to a motor plan execution before consciousness of the event can occur (see Section 4.1). 

However, in the vast majority of situations, action selection follows the conscious broadcast. 

Such consciously mediated action selection (see Section 4) can be viewed as a “fast” decision-

making using cached base-level activation and base-level (as well as current) incentive salience 

values to select options. Such a mechanism has also been referred to as model-free control (Daw, 

Niv, & Dayan, 2005 ) as well as “System 1” (Faghihi, Estey, McCall, & Franklin, 2015; 

Kahneman, 2003, 2011). Finally, the action selection process can itself be partially conscious, as 

is the case in volitional decision-making (see “Volitional Decision-making in LIDA” below). 

Volitional decision-making has also been referred to as model-based control (Daw, et al., 2005) 

and Kahneman’s “System 2” (2011). 

5. Conscious Learning in LIDA  

LIDA’s conscious learning involves several memories. In Perceptual Associative Memory 

(recognition memory), new concepts, and associations between them, are learned while existing 

ones are reinforced. In Spatial Memory, new cognitive maps are stored and existing ones updated. 

In Transient Episodic Memory broadcasted events containing what, where, and when are 

encoded. Schemes, procedural memories of what to do when, are learned into Procedural 

Memory. It is also possible for attention codelets, as well as structure building codelets, to be 

learned or reinforced. Since affective valence plays a role in determining saliency, its presence 

among the content of a broadcast affects conscious learning, in addition to influencing scheme 

recruitment and action selection. Following Tindell et al. (2009) affective valence is hypothesized 

to strongly influence learning based on feelings. We present the details of this below and then 

discuss how such learning may lead to appetitive or aversive behavior. 
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5.1 Perceptual Associative Memory Learning 

Whenever an event is part of a conscious broadcast the nodes and links of the event are learned 

into PAM (perceptual learning). If the node or link is not currently present in PAM, then it is 

added to PAM, and given an initial base-level activation according to some function of the node’s 

activation. If the node or link is already present in PAM, then its base-level activation is updated 

according to the same function. 

5.2 Base-Level Incentive Salience Learning 

Previous work on feelings as motivators (Franklin & Ramamurthy, 2006), stipulated that feeling 

nodes, each with an activation, play a role in LIDA’s conscious learning, i.e., add to a containing 

coalition’s activation which, in turn, modulates the learned base-level activation of coalition 

nodes. Here we additionally propose that feeling nodes have a valence sign, positive or negative. 

We now specify how affective valence additionally affects perceptual learning. We propose that 

for feeling events having affective valence, an additional kind of perceptual learning occurs in 

PAM. The base-level incentive salience of broadcast event nodes is positively updated as a 

function of the overall affective valence of the event, that is, the sum of the affective valences of 

all feeling nodes (drive feelings or interpretive feelings) currently associated with the event. If the 

event has an overall positive affective valence, then base-level incentive salience is increased, 

while if it has an overall negative affective valence its base-level incentive salience is decreased. 

The magnitude of the overall affective valence determines the strength of this base-level incentive 

salience learning. In summary, perceptual learning updates the base-level incentive salience of 

event nodes. After such learning, events can be directly recognized as typically desirable or not. 

Below, in the section on incentive salience links, we discuss a learning sub-type affecting how 

event nodes in the Current Situational Model obtain current incentive salience. 

5.3 Temporal Difference Learning 

Temporal difference (TD) learning (Sutton & Barto, 1998) is an approach to learning how to 

predict a quantity, which depends on future values of a given signal. TD is a reinforcement 

learning technique, which considers not just the current reward but the expected future rewards as 

well. The name TD derives from its use of the changes, or differences, in predictions over 

successive time steps to drive the learning process. In general, the process mandates that the 

prediction of a quantity (e.g., the base-level incentive salience as a prediction of the affective 

valence) at any given time step be updated to bring it closer to the prediction of the same quantity 

at the next time step. TD algorithms are often used in reinforcement learning to predict a measure 

of the total amount of reward expected over the future, which, in the context of this paper, 

corresponds to base-level incentive salience. A number of neuroscientific findings support the 

hypothesis that the brain performs TD learning (Hollerman & Schultz, 1998; Montague, Dayan, 

& Sejnowski, 1996; O'Doherty, Dayan, Friston, Critchley, & Dolan, 2003). The mechanisms 

underlying the changes in valuation appear to occur during learning itself, and “bias decisions 

without effortful retrieval at the time of decision” (without deliberation, which is effortful in 

LIDA) (Wimmer & Shohamy, 2012). 

Let us denote the tth conscious event (or state) in LIDA by st, and the event’s accompanying 

overall affective valence by rt. Also, let the discount rate, γ, be a real number from the closed 

interval, [0,1]. This rate defines the degree to which the rewards (overall affective valence) of 
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future events are discounted or de-emphasized, with a value of 1.0 corresponding to no 

discounting and 0.0 corresponding to complete discounting. Given these definitions, we define 

the complete return5, Rt, for conscious event st as: 

 

 R
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 It is then assumed that the long-term value of a state (here, conscious event), V(s), is directly 

equivalent to the expected return under an unspecified action policy6, π: 

 

 V(s) = Ep (Rt | st = s)  
[2] 

 

In the context of this work, we denote the base-level incentive salience of the event node in 

memory (PAM) underlying the ith conscious event si at the time t, by V(si , t). Thus V(si , t) = V(s), 

where s is si at the time t. Given a learning rate, α, the temporal difference update for the base-

level incentive salience of event st at the time t+1 is given by: 

 

 V(st, t+1) =V(st, t)+a[rt +gV(st+1, t)-V(st, t)] 
[3] 

 

This equation says that the update for the base-level incentive salience of event st is a 

function of the difference between the event’s previous base-level incentive salience, Vt (st ), and 

a new estimate of the complete return of st ; namely, rt +gV(st+1, t). Notice that the rt term 

corresponds to the affective valence-based learning. Thus, temporal difference learning 

additionally suggests using the discounted base-level incentive salience of the next encountered 

event when learning base-level incentive salience of an event. 

5.4 Event Sequence Learning  

Sequences are a large, critical part of Perceptual Associative Memory, connecting patterns having 

temporal regularity. Consider the multitude of melodies, word phrases, and action sequences that 

one may recognize immediately; these are all event sequences in PAM. As mentioned in the 

earlier section on schemes, event sequences are integral to schemes. Such temporal connections 

may be initially “hypothesized” by structure-building codelets as temporary temporal links in 

LIDA’s preconscious Workspace. If two events and their temporal link win the competition for 

consciousness then such a link between them would be learned in PAM. The role of event 

sequences in volitional decision making will be explored in the Section 6. 

 

 
5 Since LIDA considers the overall affective valence (reward) as coming with a given conscious event (state), the 

complete return is defined starting at t, the time of the event, instead of t+1 as is done in the reinforcement learning 

literature. 
6 Please see http://www.scholarpedia.org/article/Reinforcement_learning 
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5.5 Incentive Salience Link Learning  

Drive feeling events and their affective valence play another role in perceptual learning. This 

learning is critical in determining which event nodes (whether instantiated or not) receive current 

incentive salience from active drive feelings. In the proposed model, current incentive salience is 

transmitted from drive feelings by incentive salience links, that is, PAM links that transmit only 

incentive salience, not activation. Let us first consider an example of learning an incentive 

salience link. Suppose an agent becomes conscious of an active “thirst” drive feeling node having 

a negative affective valence. Despite this awareness, the agent takes a long walk, and returns 

home with the “thirst” feeling node, now strongly activated, carrying a large negative affective 

valence. Due to a preconscious temporal association by a structure building codelet in the 

Workspace, the agent becomes conscious of the fact that the walk led to the increase in the thirst 

node’s activation. Consequently, the agent learns an incentive salience link with a negative 

weight from the “thirsty” node to the “walking” event. (Note that this incentive salience link 

learning would occur in addition to the learning of other links, such as a temporal link running 

from the walking event node to the strong feeling of thirst event.) Having learned this incentive 

salience link, whenever the “thirsty” node becomes activated, “walking” (and any other similarly 

implicated events) receive a negative amount of current incentive salience. In contrast, suppose 

that the agent had instead drunk water in response to being conscious of the feeling “thirst,” and 

consequently reduced the drive feeling’s activation. If it becomes conscious of this temporal 

relationship, an incentive salience link with a positive weight would be learned, which would 

promote drinking when thirsty. 

How can a LIDA agent learn from experiences involving a change in a drive feeling? In 

general, these situations involve a temporal link in the Workspace from one event to another 

event involving change in activation, across the two events, of a drive feeling node. (Note that 

such a preconscious association could occur between instantiated representations from various 

places in LIDA’s memory.) In such situations, a structure building codelet can introduce an 

incentive salience link that has the feeling node as its source and the event implicated in the 

feeling node’s change as its sink. Supposing that the entire structure, consisting of both nodes 

connected by the temporal link, wins the competition for consciousness, then the proposed 

incentive salience link would be learned into PAM. Links learned in this manner are assigned a 

weight proportional to the change in the drive feeling’s activation, a, multiplied by the feeling’s 

valence sign, vs. Equation 4 expresses how this link weight, w, is proposed to be calculated: 

 

 w = vs × f (Da)  [4] 

 

After such links are learned they transmit some amount of current incentive salience to their 

sink events proportional to 1) the activation of the source (the drive feeling node) and 2) the 

link’s weight. This, by itself, may lead to the instantiation of the sink. Intuitively, the idea is to 

send positive incentive salience to events leading to positive changes to homeostasis, be they a 

decrease in a negative affective valence or increases in positive affective valence. Similarly, 

negative incentive salience is sent to events leading to negative changes to homeostasis under this 

approach. Figure 3 illustrates the example.  
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Figure 3. A previously learned incentive salience link in PAM. The orange-colored link depicts an 

incentive salience link having a positive weight in (long-term) PAM. The link’s source is the thirst drive 

feeling having a negative valence sign. The link’s sink is the event implicated in the decreased thirst event, 

here, the drink node. The thirst-change detector, a structure building codelet, can recognize decreased thirst 

by monitoring changes in activation of the thirst feeling node. It creates the Decreased Thirst event and the 

temporal (causal) association link from the Drink event. The learning process updates the weight of the 

incentive salience link according to Equation 4. In this example, a feeling, having a negative valence sign, 

decreased in activation, necessitating a positive link of drinking to reduce thirst. After an incentive salience 

link with positive weight is learned, the link transmits positive current incentive salience, based on the 

activation of the “thirst” node, to the “drinking water” event. 

5.6 Action Selection and Consciousness  

The LIDA model distinguishes action selection from motor plan selection. The former is the 

selection of a behavior (an instantiated scheme), a procedural memory, while the latter is the 

selection of an instantiated motor plan template, a sensory-motor memory (Dong & Franklin, 

2015). As mentioned in the previous section, Procedural Memory is built using structures 

originating in perceptual memory, i.e., it is a grounded representation. This implies that it may be 

primed preconsciously, allowing for preconscious priming of actions. Does this suggest that 

action selection occurs without consciousness? The answer is that there can be several 

possibilities: The unconscious selection of alarms can occur with a sudden, strong instantiation of 

a learned scheme that leads to a motor plan execution before consciousness of the event can 

occur. However, in the vast majority of situations, action selection follows the conscious 

broadcast (consciously mediated action selection). Consciously mediated action selection can be 

viewed as a “fast” decision making using cached base-level activation and base-level incentive 

salience values (and current values too) to select options (see (Franklin, et al., 2016) for a detailed 

description). Such a mechanism has also been referred to as model-free control (Daw, et al., 2005 

) as well as “System 1” (Kahneman, 2003, 2011). Finally, the action selection process can itself 
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be partially conscious, as is the case in volitional decision making. Volitional decision making 

has also been referred to as model-based control and Kahneman’s “System 2.” 

6. Multi-Cyclic Motivational Processes in LIDA 

So far, we have discussed the role of motivational processes within a single cognitive cycle. 

However, many important aspects of cognition are implemented by, and occur over, multiple 

cognitive cycles. Recall the previous distinction (Section 3.5) between 1) an option, an 

instantiated virtual event having nonzero total incentive salience, 2) an immediate goal, an option 

that is the expected result of a selected behavior, and 3) a pending goal, a goal that is part of an 

instantiated behavior stream, one of whose behaviors have been selected, that cannot be 

immediately achieved. Now, suppose that an option comes to mind, that is, is a part of the content 

of a conscious broadcast. As a direct result, several schemes in Procedural Memory will typically 

be instantiated as behaviors with the option bound to their results. In some situations, an agent 

may immediately select an action to achieve this option in which case the option becomes the 

agent’s immediate goal. In other situations, the agent enters into a volitional decision-making 

process. More generally, we can speak of deliberation (Sloman, 1999), a kind of cognitive 

process that builds upon reactive processes. For each option, a mental simulation will likely 

occur, resulting in new virtual events in LIDA’s Current Situation Model. The total incentive 

salience of those virtual events will bias the results of deliberation. The LIDA conceptual model 

implements deliberation via ideomotor theory, which Franklin (2000) described in detail. 

6.1 Volitional Decision Making in LIDA 

What conditions lead to volitional decision making? We hypothesize that it may be initiated by a 

behavior with considerable activation, but not enough that it can be currently selected. There are a 

few main reasons why a behavior would fit this billing: 1) competition with other behaviors, 2) 

having an unsatisfied context or 3) a result with low incentive salience. In Maes’ behavior 

network (1989), a competition situation arises between two behaviors when one undoes a 

precondition of the other. Alternatively, competition may arise when there is insufficient 

difference in behavior activation to prefer one over the other. For instance, evidence from the 

basal ganglia suggests that action selection performance improves when competing alternatives 

inhibit each other requiring an action to have a “statistically significant” greater activation than its 

competitors to be selected (Bogacz, Usher, Zhang, & McClelland, 2007). Alternatively, a 

behavior may have strong activation due to its underlying result and/or action event having 

positive incentive salience; however, its context might not be satisfied. Similarly, the context may 

be satisfied, but the result may have a high negative incentive salience. In each of these cases, a 

deliberative process may be initiated. What initiates such a process? In LIDA a competing 

behavior with an internal action enters into Action Selection with every instantiated behavior that 

was produced by an option or a drive. If this special behavior is selected, its internal action starts 

an ideomotor theory volitional process (see next section). 

6.2 Ideomotor Theory in LIDA 

William James first introduced the ideomotor theory of volition (James, 1890; Shin, Proctor, & 

Capaldi, 2010). James postulated proposers, objectors, and supporters as actors in the drama of 
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acting volitionally. He might have suggested the following scenario in the context of dealing with 

a feeling of thirst: The idea of drinking orange juice “pops into mind,” that is, propelled to 

consciousness by a proposer motivated by the drive feeling, “thirst,” and a “liking” for the 

sweetness of orange juice, it becomes the contents of consciousness. “No, it’s too sweet,” asserts 

an objector. “How about a beer?” says a different proposer. “Too early in the day,” says another 

objector. “Orange juice is more nutritious,” says a supporter. With no further objections, drinking 

orange juice is volitionally selected. 

Baars incorporated ideomotor theory directly into his Global Workspace Theory (1988, 

Chapter 7). The LIDA model fleshes out volitional decision-making via ideomotor theory within 

Global Workspace Theory (Franklin, 2000) as follows. An idea “popping into mind” in the LIDA 

model is accomplished by the idea being part of the conscious broadcast of a cognitive cycle. 

Thus, the conscious broadcast implements the characters in James’ scenario, with some 

broadcasts acting as proposers, others as objectors, and others as supporters, the content of each 

“popping into mind” if it wins the competition, and is broadcast. 

But, how does the thought “Let’s drink orange juice” come to consciousness? It must arise 

from an option, a virtual “drink-orange-juice” event node with positive total incentive salience in 

the Workspace. According to this motivational extension to LIDA, an option may arise from an 

event having nonzero base-level incentive salience, e.g., seeing a glass of one’s favorite orange 

juice. Alternatively, or additionally, an active drive feeling, e.g., thirst, may provide sufficient 

current incentive to the drink-orange-juice event node in PAM to instantiate it in the Workspace 

as an option. Like every higher-order cognitive process in the LIDA model, volitional decision-

making occurs over multiple cycles. In this example, “drinking orange juice” may come to 

consciousness for the reasons just described. If this proposal fails to immediately lead to an 

external action selection, another proposal, or an objection, could come to consciousness. 

LIDA fleshes out ideomotor theory by the use of a “timekeeper” (Franklin, 2000) which as the 

result of an internal action, starts a timer as the result of a proposal, stops it when confronted by 

an objection, and restarts it after the occurrence of  some support. Volitional decision-making 

ends when time runs out on some proposal (option), that is no further objection arises, and an 

action is thus selected. 

The LIDA model hypothesizes that neural correlates of volitional decision-making include 

the ventromedial prefrontal cortex, the striatum, the basal ganglia and the ventral anterior 

cingulate cortex (MacDonald, 2008; Pasquereau et al., 2007; Rowe, Hughes, Eckstein, & Owen, 

2008). 

6.3 Proposers & Objectors from Mental Simulations 

How might LIDA produce James’ proposers and objectors? During volitional decision-making, 

instantiated events in the Workspace, including options and drives, repeatedly cue LIDA’s 

perceptual and episodic memories. This cueing retrieves relevant local associations, and, drawing 

upon knowledge stored by the temporal links of event sequences, includes potential future events. 

Potential future events are grounded virtual representations of potential consequences of pursuing 

the options. Over multiple cognitive cycles, such virtual actions can produce an instantiated, 

“chain” of events. Such chains can be included in coalitions that may compete for consciousness. 

Critically, each event in the coalition contributes its total activation and total incentive salience. 

Recall that total incentive salience includes a base level component (updated by TD learning) and 

a current component (modulated by current drive feelings). Thus, the incentive salience of future 
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events, proposers and objectors in ideomotor theory, would contribute to a coalition’s overall 

strength or salience. The net effect is to bias those behaviors or behavior streams believed to lead 

to a “desirable” future set of events. For instance, considering going outside in the rain 

unprepared may lead you to imagine getting wet, which leads you to grab an umbrella, or 

imagining being robbed on a walk in the city may compel you to take pepper spray along. Thus, 

appetitive or aversive behavior may also result from an anticipation, imagination, or recollection 

of an event with incentive salience. 

6.4 Deliberation and Model-Based Control 

It is our view that deliberation in general should involve the kind of mental simulations described 

in the previous section. For each alternative a mental simulation must occur with total incentive 

salience biasing the results of deliberation. Huys et al. (2012)  have found that humans adopt a 

Pavlovian strategy for pruning decision trees. During mental evaluation of a sequence of choices, 

they curtailed any further evaluation of a sequence as soon as they encountered a large loss. In 

terms of the LIDA model high negative incentive salience may cut off one “branch” in a tree of 

possibilities. For example, while planning a route to the airport you realize the plan will involve 

taking the interstate, which you view as dangerous. This leads you to abandon that specific plan, 

and come up with another route taking safer roads. Conversely, sufficient positive incentive 

salience may prompt a decision, leading to the end of the deliberation altogether.  

Recall that model-based control refers to a set of reinforcement learning methods in which an 

internal model of the environment is learned and used to evaluate available actions or cues on the 

basis of their potential outcomes (see Section 3.10). At this point it is clear that volitional decision 

making modulated by the total incentive salience of anticipated or potential events is an 

implementation of model-based control in the LIDA conceptual model’s Current Situational 

Model. Deliberative cognitive processes are by nature slower than reactive ones. However, as we 

have suggested, deliberation in LIDA can produce model-based control, whereas reactive or 

consciously mediated action selection implements less normative model-free control. 

7. Comparison between LIDA and Psi 

As we mentioned in the introduction, the Psi model (Bach, 2009) provided inspiration for some of 

the motivational concepts introduced in this paper in the context of LIDA. Table 3 provides an 

overview of each Psi motivational construct and its corresponding instantiation in LIDA. 

Psi distinguishes between demands, urges, motives, cognitive modulators, affect, and directed 

emotions. Demands are built-in drives that give rise to goals while urges are the signals that make 

demands apparent. In the LIDA conceptual model, homeostatic sensors and the sensors’ 

associated drive feeling nodes implement drives. Psi theory suggests: “an abrupt increase of an 

urge corresponds to… a ‘displeasure or distress signal’… while a decrease of an urge — its 

satisfaction — yields … ‘pleasure signals’” (Bach, 2012). In Psi, a motive is defined as the 

combination of an urge and an event associated with the satisfaction of the urge. LIDA refers to 

motives as events with nonzero incentive salience. Psi theory asserts that goals depend on the 

nature of a given situation and the existing demands.  

Higher-level emotions such as jealousy and anger are said to arise in Psi from the 

combination of motives and the agent’s perception of a situation. Fellous’ work (2004) has been 

interpreted as providing a biological underpinning for the use of emotions in Psi (Lee-Johnson & 
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Carnegie, 2009). Psi maintains that emotions should be distinguished from motivational 

phenomena: while hunger is cognitively represented (as an urge) and implies a valence and an 

effect on the allocation of mental and physical resources of an organism, it is not an emotion, but 

a motivator. 

 

 

 

Concept Psi Term LIDA Term 

Built-in homeostatic 

mechanism 

Demand (demand sensor) Homeostatic sensor 

Cognitive 

representation 

of a drive 

Urge Drive feeling node 

Valence (Psychology) Valence (kind of modulator) Affective valence 

Arousal Arousal (kind of modulator) Sum activation of feeling 

nodes 

Desired (or aversive) 

event 

Motive Event with nonzero 

incentive salience 

Emotion Motives combined with perceptual 

representation 

Feelings with cognitive 

content 
Table 3. Approximate overlap of motivation concepts in the Psi and LIDA models. 
 

 

Finally, Bach et al (Bach, 2012) adopts the general notion that motivation determines what 

has to be done, while emotion determines how it has to be done. In our view such an assertion is 

more problematic than elucidating. One difference between the extended LIDA model introduced 

above and the Psi model is the way drive feeling nodes (urges in Psi) affect perception, action 

selection and action execution. In Psi urges interact with perception via modulators (Bach, 2003, 

Fig. 1; 2012, Fig. 6). In LIDA feelings can immediately modulate perception and action selection, 

given that conscious learning has previously occurred. Some feeling nodes are likely part of most 

coalitions, and affect learning if they win the competition for consciousness.  

Emotional valence is considered a representation of desirability (Bach, 2012), while in this 

model the two are distinguished, and play different functional roles (see sections “Affective 

Valence” and “Incentive Salience” above). Furthermore, it appears that in Psi, valence is a 

“reinforcement signal that emanates from changes in the perceived demands” (Bach, 2012). 

However, in our model, valence can also arise from intrinsically positive or negative stimuli, e.g., 

a sweet feeling node with positive valence. Lastly, the Psi model does not integrate cognitive 

neuroscience evidence for the “short route of emotion” (Cannon, 1927; Faghihi, Nkambou, 

Poirier, & Fournier-Viger, 2009; LeDoux, 2006), which have been referred to here as alarms. 

8. Future Work 

The motivational concepts and mechanisms outlined in this paper were implemented as part of 

the LIDA Framework (Snaider, et al., 2011), a Java-based software framework that simplifies the 

creation of LIDA-based software agents; however, more computational experiments are needed to 

verify that these concepts and mechanisms accurately model human and animal behavior. McCall 
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(2014) made progress in this direction by replicating a reinforcer devaluation experiment 

(Gallagher, McMahan, & Schoenbaum, 1999). In particular, McCall simulated an experiment 

testing the effects of orbitofrontal lesions on the representation of incentive value in associative 

learning. The orbitofrontal cortex (OFC) is thought to contain representations of the motivational 

significance of cues (conditioned stimuli), and the incentive value of expected outcomes. The 

significance of the reinforcer devaluation task is that normal performance depends on the ability 

of a conditioned stimulus (CS) to gain access to the motivational properties of an upcoming 

unconditioned stimulus (US). Moreover, it illustrates the difference between the fast acting, slow-

adapting model-free control (consciously mediated action selection in LIDA) and the slow-acting, 

fast-adapting model-based control (volitional decision-making in LIDA). In order to replicate this 

experiment, it was necessary to implement two LIDA agents—a “lesioned OFC” LIDA agent and 

an “intact OFC” LIDA agent—and the experimental environment in which the agents were 

situated. Both LIDA agents were implemented using the LIDA Framework, and the experimental 

environment was implemented as a separate framework module that was accessible to the agent 

through its sensors and effectors. McCall’s results were consistent with the original experiment, 

lending credibility to the general applicability of these motivational mechanisms. 

Many opportunities exist for enhancing the learning mechanisms introduced in Section 5. For 

example, our temporal difference-based learning of base-level incentive salience assumed that the 

discount factor, γ, was fixed. However, a dynamic discount factor that is modulated by changes in 

the agent’s physiological state (for example, stress) may be more appropriate for cognitive 

modeling. Another avenue of future research could take advantage of eligibility traces, which 

have been shown to expedite temporal difference learning by assigning credit back further in time 

than the immediately previous event. Eligibility traces can be viewed as providing a short-term 

memory of multiple previous events so that several of these previous events may all be updated as 

each new observation arrives. Eligibility traces are usually implemented by an exponentially 

decaying memory trace, with decay parameter λ (Barto, 2007). 

9. Conclusion 

In this paper, we explored how the agenda of an autonomous agent could be specified in LIDA—

a systems-level cognitive architecture. To this end, we presented extensions to LIDA’s conceptual 

model covering a range of motivation-related concepts, including feelings, affective valence, 

incentive salience, emotion, appraisal, reinforcement learning, and model-free and model-based 

learning. We discussed the role of motivations in a single LIDA cognitive cycle, as well as over 

multiple cycles. These new capabilities have been implemented in the LIDA Framework, and we 

refer interested readers to McCall (2014) for details on the application of these motivational 

mechanisms to the computational replication of a reinforcer devaluation experiment (Gallagher, 

McMahan, & Schoenbaum, 1999). Finally, we described the relationship between some of these 

motivational concepts and similar counterparts in the Psi model, which was used as a source of 

inspiration for the present work. 
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