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New Developments in the LIDA Model 

By Stan Franklin, Steve Strain, Sean Kugele, Tamas Madl, Nisrine Ait Khayi & Kevin Ryan 

Abstract 

Research on our LIDA Model of how minds work is now well into its second decade. 
Here we briefly summarize new developments concerning research on the model. One 
of these is the appearance of a tutorial article that offers a gentle way towards 
understanding the model. Another describes an outsider’s view of LIDA’s contributions. 
The list continues with descriptions of various stages of research on action execution, 
spatial memory, motivation, self, multi-cyclic processes, language, brain rhythms, 
mental imagery, and a computational framework.   

Introduction 

Systems level cognitive models are intended to model minds, which we take here to be 
control structures (Franklin, 1995, p.412) for autonomous agents (Franklin & Graesser, 
1997). The LIDA (Learning Intelligent Decision1 Agent) systems level cognitive model is 
intended to model human minds, some animal minds, and some artificial minds, be they 
software agents or robots. LIDA is a conceptual and partly computational model that 
serves to implement and flesh out a number of psychological theories (Baddeley, 1993; 
Barsalou, 1999; Conway, 2001; Ericsson & Kintsch, 1995; Glenberg, 1997; Minsky, 1985; 
Sloman, 1999), in particular the Global Workspace Theory of Baars (1988). Hence any 
LIDA agent, that is any agent whose control structure is based on the LIDA Model, is at 
least functionally conscious (Franklin, 2003). Research on LIDA has entered its second 
decade (Franklin & Patterson, 2006). This note is intended to summarize some of the 
newer developments of the LIDA Model.  

The LIDA Tutorial 

The LIDA Model is quite complex consisting of numerous independently and 
asynchronously operating modules (see Figure 1 below). It has been described in more 
than fifty published papers, presenting a considerable challenge to any would be 
student of the model. Thus the recent appearance of a LIDA tutorial paper (Franklin et 
al., 2016) summarizing the contents of these earlier papers, as well as new material, is a 
significant new LIDA development. The tutorial reduces the fifty some odd papers into 
only fifty some odd pages of text and figures.  

 
1 For historical reasons, this word was previously “distribution”. It has been recently 
changed to better capture important aspects of the model in its name. 
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AI: Its Nature and Future 

In 2016, Oxford University Press published philosopher/cognitive scientist Margaret 
Boden’s AI: Its Nature and Future (2016), which pays considerable attention to our LIDA 
Model.  

Pointing out that LIDA “…arises from a unified, systems-level theory of cognition…”, 
Boden goes on to speak of LIDA as being “…deeply informed by cognitive psychology, 
having been developed for scientific, not technological, purposes.” and “…designed to 
take into account a wide variety of well-known psychological phenomena, and a wide 
range of experimental evidence …” She says that “Integrating highly diverse 
experimental evidence…” LIDA is used “…to explore theories in cognitive psychology and 
neuroscience.” She also says that “…the philosophical significance of LIDA, for instance, 
is that it specifies an organized set of virtual machines that shows how the diverse 
aspects of (functional) consciousness are possible.” And, Boden points out that the LIDA 
Model speaks to the “binding” problem, to the frame problem, and avoids any central 
executive. 

                                                      Figure 1: The LIDA Cognitive Cycle 

Action Execution 

The LIDA Model attempts to model minds generally, providing an architecture for the 
control structure of any number of different LIDA-based agents. Thus, the LIDA Model in 
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its general form must remain uncommitted to particular mechanisms or specifications 
for senses, actions, and environments. Each of its many independent and asynchronous 
modules, mentioned above, must allow for implementation so as to serve various 
agents with a variety of senses, actions and environments. 

Two of LIDA’s most recently developed modules are devoted to action execution, 
which is concerned with creating a motor plan for a selected goal-directed behavior, and 
executing it. A motor plan template transforms a selected behavior into a sequence of 
executable actions. The Sensory Motor Memory (see Figure 1 above) learns and 
remembers motor plan templates (Dong & Franklin, 2014). Based on the subsumption 
architecture (Brooks, 1986), our LIDA agent testing this module adds analogs of the 
visual system’s dorsal and ventral streams to the Model. Given an appropriate motor 
plan for the selected behavior, the Motor Plan Execution module instantiates a suitable 
motor plan, and executes it (Dong & Franklin, 2015b). Together the two modules allow a 
LIDA-based agent to execute a selected action, quite important for any autonomous 
agent. 

We have also introduced a new type of sensorimotor learning to the LIDA Model   
 (Dong & Franklin, 2015a). Using reinforcement learning, it stores and updates the 
rewards of pairs of data, motor commands and their contexts, allowing the agent to 
output effective commands based on its reward history. As is all learning in LIDA, this 
sensorimotor learning is cued by the agent’s conscious content. A dynamic learning rate 
controls the effect of the newly arriving reward. The mechanism controlling the learning 
rate is inspired by the memory of errors hypothesis from neuroscience (Herzfeld, 
Vaswani, Marko, & Shadmehr, 2014). Our computer simulations indicate that using such 
a dynamic learning rate improves movement performance.  

Spatial Memory 

In any cognitive system, memory is most generally defined as the encoding, storing and 
recovery of information of some sort. The storage can be over various time scales. 
Cognitive modelers, and cognitive scientists in general, tend to divide the memory pie in 
many different ways. The LIDA Model has separate, asynchronous, modules for memory 
systems of diverse informational types. (In Figure 1, the modules for various long-term 
memory systems are dark colored.) Much earlier research was devoted to Perceptual 
Associative Memory, Transient Episodic Memory, Declarative Memory, and Procedural 
Memory. (In all these cases, there is much left to be done.) Recent work on Sensory 
Motor Memory was discussed in the preceding section.  

Over the past couple of years we have begun to think seriously about how best to 
represent data in Spatial Memory, representations of spatial information concerning 
objects in the agent’s environment, and its location within it. We picture long-term  
Spatial Memory as consisting of hierarchies of cognitive maps, each representing the 
size, shape and location of objects, and the directions and distances between them. In 
addition to long-term spatial memory, LIDA’s working memory may contain one or few 
cognitive map segments and facilitate planning and updating. Inspired by place and grid 
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cells involved in spatial representations in mammalian brains, cognitive map 
representations in LIDA also consist of hierarchical grids of place nodes, which can be 
associated with percepts and events. We have implemented prototype mechanisms for 
probabilistic cue integration and error correction, to mitigate the problems associated 
with accumulating errors from noisy sensors (see section on uncertainty below). So far 
we have only experimented with how human agents mentally represent such cognitive 
maps of neighborhoods (Madl, Franklin, Chen, Montaldi, & Trappl, 2016; Madl, Franklin, 
Chen, Trappl, & Montaldi, 2016). 

Motivation 

Every autonomous agent, be it human, animal or artificial, must act in pursuit of its own 
agenda (Franklin & Graesser, 1997). To produce that agenda requires motivation. 
Actions in the LIDA Model are motivated by feelings, including emotions, that is feelings 
with cognitive content (Johnston, 1999). An early paper lays this out, and relates 
feelings in this context to both values and utility (Franklin & Ramamurthy, 2006).  More 
recent work fleshes out just how feelings play a major role in motivating the choice of 
actions (McCall, 2014; McCall, Franklin, Faghihi, & Snaider, submitted). Feelings arise in 
Sensory Memory (see Figure 1), are recognized in Perceptual Associative Memory, and 
become part of the percept that updates the Current Situational Model. There they 
arouse structure building codelets to produce various options advocating possible 
responses to the feeling (in accordance with appraisal theories of emotion (Franklin, et 
al., 2016)). The most salient of these likely wins the competition for consciousness in the 
Global Workspace, and is broadcast, in particular to Procedural Memory. There schemes 
proposing specific actions to implement the broadcast option are instantiated and 
forwarded to Action Selection, where a single action is selected as a response to the 
original feeling. Thus feelings act as motivators. 

Self 

Any systems-level cognitive model such as our LIDA Model that aspires to model 
consciousness, must attempt to account for the notion of self with its multiple aspects. 
We have made one attempt at describing how a number of different “selves” could be 
constructed within the LIDA Model (Ramamurthy & Franklin, 2011). These include the 
minimal (or core) self with its three sub-selves, self as subject, self as experiencer and 
self as agent. The sub-selves of the extended self are comprised of the autobiographical 
self, the self-concept, the volitional (or executive) self, and the narrative self. 

More recently we have begun to augment this account by combining these 
constructs with key elements of Shaun Gallagher’s pattern theory of self (2013), namely 
his meta-theoretical list of aspects. These include minimal embodied aspects, minimal 
experiential aspects, affective aspects, intersubjective aspects, psychological/cognitive 
aspects, narrative aspects, extended aspects, and situated aspects. We explore the use 
of the various aspects of this pattern theory of self in producing each of the various 
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selves within the LIDA Model. The three types of minimal self are all implemented using 
only minimal embodied aspects and minimal experiential aspects. All of these can be 
created within the current LIDA Model. The four types of extended self will require all 
eight aspects in the list. Some of these will require additional processes to be added to 
the LIDA Model. 

This use of pattern theory is helping us to clarify various theoretical issues with 
including various “selves” in the LIDA Model, as well as open questions such as the 
relationships between different sub-selves. Using pattern theory also can enable us to 
set benchmarks for testing for the presence of various types of self in different LIDA-
based agents. 

Cyclic to Multicyclic Processes 

The LIDA Model begins its fleshing out of Global Workspace Theory by postulating a 
cognitive cycle (see Figure 1 for a detailed diagram), which we view as a cognitive atom 
from which more complex cognitive processes are constructed. A LIDA agent spends its 
“life” in a continual, cascading (overlapping) sequence of such cognitive cycles, each 
sensing and understanding the agent’s current situation, and choosing and executing an 
appropriate response. Such cycles occur five to ten times a second in humans (Madl, 
Baars, & Franklin, 2011). The first decade or more of our research was devoted to trying 
to understand what happens during a single cognitive cycle, taking in humans 200 to 
500 ms. Now, having at least a partial overall discernment of the activity of a single 
cycle, we feel emboldened to turn some of our attention to more complex multi-cyclic 
processes such as planning, reasoning, and deliberation.  

Language 

LIDA has been criticized for focusing on low intelligence tasks, and lacking high cognitive 
functions such as language understanding2 (Duch, Oentaryo, & Pasquier, 2008). To 
overcome this gap, and initiate language processing in the LIDA architecture, learning 
the meaning of the vervet monkey alarm calls was simulated.  Field studies (Seyfarth, 
Cheney, & Marler, 1980) revealed the existence of three distinct alarm calls. Each call is 
emitted to warn the rest of the group of the danger from a predator in the vicinity. 
Upon hearing a particular alarm call, vervet monkeys typically escape into safe locations 
in a manner appropriate to the predator type signaled by that alarm. A LIDA based agent 
that learns the meaning of these alarm calls has been developed (Khayi-Enyinda, 2013). 
LIDA’s perceptual learning mechanism was implemented to associate each alarm call 
with three distinct meanings: an action based meaning, a feeling based meaning and a 
referential based meaning. This multiple meaning assessment approach aligns with our 

 
2 LIDA’S predecessor, IDA, communicated with sailors in pseudo-natural language, 
pseudo in the sense that it was hand-crafted rather than learned, and that it only dealt 
with a very narrow domain. 
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ultimate goal of modeling human words that must convey multiple meanings. A 
manuscript describing this research has been submitted, reviewed, revised, and re-
submitted (Ait Khayi & Franklin, 2018 to appear). 

LIDA’s Hypothesis Regarding Brain Rhythms 

Marr proposed three levels of analysis for cognitive modeling—the computational, the 
representational/algorithmic, and the implementational (1982). As a general model of 
minds, LIDA’s core concepts possess an applicability that spans many possible domains 
and implementations. Accordingly, LIDA’s primary area of interest lies within Marr’s 
computational and algorithmic levels. However, many classes of biological mind fall 
within LIDA’s purview, and modeling biological minds from the perspective of the LIDA 
Model requires careful attention to the available evidence and the competing theories 
regarding the way in which brains effect control structures for behavior in humans and 
certain non-human animals.  

A helpful metaphor may be found in the example problem of reverse engineering a 
software program. The primary goal is to uncover the algorithms that carry out the 
software’s computations, but this might require, or at least be facilitated by 
investigation of the operations carried out in the hardware during the program’s 
execution. We frequently assert that LIDA is a model of minds rather than brains. Having 
said that, we find that understanding those biological minds of interest to LIDA requires 
close and frequent reference to the way brains carry out computations. In practice, this 
has meant examination of biological minds at the implementation level as well as the 
algorithmic and computational levels. 

While neuroscience manifests a solid theoretical consensus regarding the basic 
tenets of neuroanatomy and neuronal physiology, considerable controversy continues 
to pervade investigations into the cognitive aspects of neural function. The vast 
proliferation of evidence resulting from recent decades’ technological advances have 
thus far failed to converge on a consensual framework for understanding the neural 
basis of cognition. Nonetheless, LIDA’s perspective on biological minds currently 
commits to a particular collection of theoretical proposals situated squarely within the 
broader controversy. While a detailed treatment of these proposals lies outside the 
scope of the present discussion, we give a brief overview as follows.  

The Cognitive Cycle Hypothesis and the Global Workspace Theory (GWT) of 
Consciousness form the backbone of the LIDA Model. GWT, originally a psychological 
theory (Baars, 1988), was recently updated (Baars, Franklin, & Ramsøy, 2013) into a 
neuropsychological theory known as Dynamic Global Workspace Theory (dGWT). Per 
dGWT, a global workspace is “a dynamic capacity for binding and propagation of neural 
signals over multiple task-related networks, a kind of neuronal cloud computing” (Baars, 
et al., 2013, p. 1). Per LIDA’s Cognitive Cycle Hypothesis, the global workspace produces 
a quasiperiodic broadcast of unitary and internally consistent cognitive content that 
mediates an autonomous agent’s action selection and learning, and, over time, 
comprises the agent’s stream of consciousness.  
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The theoretical proposals of Freeman’s Neurodynamics (Freeman, 2012; Freeman & 
Kozma, 2010) provide the framework most harmonious with LIDA’s central hypotheses. 
Within this framework, a cognitive cycle comprises the emergence of a self-organized 
pattern of neurodynamic activity. LIDA’s Rhythms Hypothesis postulates that the 
content of a cycle’s broadcast from the global workspace manifests in experimentally 
observable brain rhythms as gamma (30-80 Hz) frequency activity scaffolded within a 
slow-wave structure of approximately theta (4-6 Hz) frequency that tracks the rhythm of 
successive broadcasts. Elaboration of this hypothesis within the framework of 
Freeman’s neurodynamical theory is quite complex and is the subject of a publication 
currently under preparation. 

Mental Imagery, Preconscious Simulation, and Grounded Cognition 

Most humans report the ability to have sensory-like experiences in the absence of 
external stimuli.  They describe experiences such as “having a song stuck in our heads” 
or “listening to our inner voices” or “seeing with our mind’s eye”. In the literature cited 
below, these phenomena are referred to as “mental imagery”. Many experiments have 
been performed that suggest mental imagery facilitates, and may be critical for, a broad 
range of mental activities including prediction (Moulton & Kosslyn, 2009), problem 
solving (Qin & Simon, 1992; Shaver, Pierson, & Lang, 1975), mental rehearsal (Driskell, 
Copper, & Moran, 1994; Keller, 2012), and language comprehension (Bergen, Lindsay, 
Matlock, & Narayanan, 2007; Zwaan, Stanfield, & Yaxley, 2002). Cognitive models are 
needed to help explain the processes that underlie mental imagery. We have begun to 
leverage the LIDA model to gain insight into how the fundamental capabilities needed 
for mental imagery could be realized in artificial minds, and to apply these insights 
toward the construction of software agents that utilize mental imagery to their 
advantage. 
 
Mental imagery is by definition a conscious process; however, there is an intriguing 
possibility that the same mechanisms underlying mental imagery also support 
preconscious cognitive processes, and enable grounded (embodied) cognition. The 
psychologist and cognitive scientist Lawrence Barsalou defines “simulation” as the “re-
enactment of perceptual, motor, and introspective states acquired during experience 
with the world, body, and mind”, and hypothesizes that  
 

[simulation] is not necessarily conscious but may also be unconscious, probably 
being unconscious even more often than conscious. Unconscious [simulations] 
may occur frequently during perception, memory, conceptualization, 
comprehension and reasoning, along with conscious [simulations]. When 
[simulations] reach awareness, they can be viewed as constituting mental 
imagery... (Barsalou, 2009) 
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It is a goal of our research program to explore the possibility of a unified set of 
mechanisms supporting mental imagery, preconscious simulation, and grounded 
cognition. The LIDA model provides an ideal foundation for exploring these topics, as it 
is one of the few biologically inspired cognitive architectures that attempts to model 
functional consciousness, and is firmly committed to grounded cognition (Franklin, 
Strain, McCall, & Baars, 2013).  

Representing and computing with uncertainty in LIDA 

Cognition must deal with large amounts of uncertainty, due to a partially observable 
environment, erroneous sensors, noisy neural computation, and limited cognitive 
resources. There is increasing evidence for probabilistic mechanisms in brains (Chater, 
Tenenbaum, & Yuille, 2006; Clark, 2013; Knill & Pouget, 2004). We have recently started 
exploring probabilistic computation for LIDA, as of now for the specific purpose of 
dealing with spatial uncertainty and complexity in navigation (Madl, Franklin, Chen, 
Montaldi, et al., 2016; Madl, Franklin, Chen, Trappl, et al., 2016). Work is underway to 
augment LIDA’s representations (inspired by Barsalou’s perceptual symbols and 
simulators (Barsalou, 1999)) with a representation and computation mechanism 
accounting both for the uncertainty in various domains, as well as approximately 
optimal inference given cognitive, time and memory limitations.  

LIDA Framework in Python 

In 2011, Snaider et al. presented the “LIDA Framework”, a software framework written 
in the Java programming language that aims to simplify the process of developing LIDA 
agents. The LIDA Framework implements much of the low-level functionality that is 
needed to create a LIDA software agent, and provides default implementations for 
many of the LIDA modules. As a result, simple agents can often be created with a 
modest level of effort by leveraging “out of the box” functionality. 
 
Inspired by the success of the LIDA Framework, a sister project is underway to 
implement a software framework in the Python programming language, which we refer 
to as lidapy.  One of lidapy’s primary goals has been to facilitate the creation of LIDA 
agents that are situated in complex and “real world” environments, with the eventual 
goal of supporting LIDA agents in a robotics context.  Towards this end, lidapy has been 
designed from the ground up to integrate with the Robot Operating System (Quigley et 
al., 2009), a framework developed by the Open Source Robotics Foundation (OSRF) that 
was specifically designed to support large-scale software development in the robotics 
domain. 
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