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Abstract

Computational cognitive models of spatial memory often neglect difficulties posed by the real world, such as sensory noise, uncer-
tainty, and high spatial complexity. On the other hand, robotics is unconcerned with understanding biological cognition. Here, we
describe a computational framework for robotic architectures aiming to function in realistic environments, as well as to be cognitively
plausible.

We motivate and describe several mechanisms towards achieving this despite the sensory noise and spatial complexity inherent in the
physical world. We tackle error accumulation during path integration by means of Bayesian localization, and loop closing with sequen-
tial gradient descent. Finally, we outline a method for structuring spatial representations using metric learning and clustering. Crucially,
unlike the algorithms of traditional robotics, we show that these mechanisms can be implemented in neuronal or cognitive models.

We briefly outline a concrete implementation of the proposed framework as part of the LIDA cognitive architecture, and argue that
this kind of probabilistic framework is well-suited for use in cognitive robotic architectures aiming to combine spatial functionality and
psychological plausibility.
� 2017 Elsevier B.V. All rights reserved.

Keywords: Spatial memory; Bayesian brain; LIDA; Cognitive architecture; Computational cognitive modeling

1. Introduction1

Spatial memory encodes, stores, recognizes and recalls
spatial information about the environment and agents’ ori-
entation within it. Representing spatial information accu-
rately in the real world is hard, for several reasons.
Sensors and actuators are limited, erroneous and noisy
(in the sense of noise interfering with the signal). There

are additional sources of uncertainty or unknown informa-
tion, such as external events, actions of other organisms,
unperceived or currently unperceivable objects or events.
Furthermore, physical environments can be highly com-
plex, and yet cognitive resources (amount of memory, pro-
cessing power, time and energy available) are necessarily
limited by biological and physical constraints.

In artificial intelligence (AI) and robotics research, prob-
abilistic models have provided key tools for dealing with
such challenges, facilitating the quantitative characteriza-
tion of beliefs and uncertainty in the form of probability
distributions, and the machinery of Bayesian inference
for updating them with new data. They have also inspired

http://dx.doi.org/10.1016/j.cogsys.2017.08.002
1389-0417/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: School of Computer Science, University of
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1 Some of the arguments in this paper have been published before in the

first author’s PhD thesis (Madl, 2016).
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the ‘Bayesian brain’ (Knill & Pouget, 2004) and ‘Bayesian
cognition’ (Chater, Oaksford, Hahn, & Heit, 2010) para-
digms in the cognitive sciences. These paradigms have been
successful in explaining human behaviour in tasks as
diverse as the integration of sensory cues (Ernst, 2006)
including spatial information (Cheng, Shettleworth,
Huttenlocher, & Rieser, 2007; Nardini, Jones, Bedford, &
Braddick, 2008), sensorimotor learning (Körding &
Wolpert, 2004), visual perception (Yuille & Kersten,
2006) or reasoning (Oaksford & Chater, 2007). Their suc-
cess suggests an answer to what biological cognition might
be doing to cope with the above-mentioned challenges:
approximate Bayesian inference.

Despite of this success and of the suitability of proba-
bilistic models to deal with uncertain and noisy spatial
information, there have been few attempts to use them
for modelling spatial memory within cognitive modelling,
the branch of cognitive science concerned with computa-
tionally simulating mental processes. There is a gap in
the literature between probabilistic spatial models in
robotics and computational cognitive models of spatial
memory. In robotics, Simultaneous Localization and Map-
ping (SLAM) models (Thrun & Leonard, 2008) are capable
of dealing with real-world noise, uncertainty, and complex-
ity to some extent, but are cognitively implausible.2 On the
other hand, most current computational cognitive models
of spatial memory, which are designed to model biological
spatial cognition, cannot deal with all of these challenges,
and are thus mostly confined to simplistic simulations
(see Madl, Chen, Montaldi, & Trappl (2015) for a review).

In addition, although spatial representations in humans
have been argued early to be hierarchical (Hirtle & Jonides,
1985a; McNamara, Hardy, & Hirtle, 1989; Greenauer &
Waller, 2010), similarly to some robotic implementations
having to deal with large, complex environments
(Kuipers, 2000; Wurm, Hornung, Bennewitz, Stachniss,
& Burgard, 2010), it is not known how (by which process)
these hierarchical spatial maps might be structured.
Although many computational models of spatial memory
running in simplified environments exist, there is a lack
of biologically and psychologically plausible ‘algorithms’
serving as models of human cognitive computations related
to spatial information processing which can function in
realistic, uncertain, complex environments.

The deprioritization of the problems of uncertainty and
noise in favour of tractably modelling other human cogni-
tive mechanisms is also pronounced in cognitive architec-
tures, which try to account for a large number of mental
processes in a unified, comprehensive, systems-level model
(as opposed to computational cognitive models, which usu-

ally focus on a single phenomenon). In their overview of
the field, Langley, Laird, and Rogers (2009) argue that
‘‘ we should attempt to unify many findings into a single theo-

retical framework, then proceed to test and refine that the-

ory”, supporting the arguments of Newell (1973) that
‘‘you can’t play 20 questions with nature and win”, highlight-
ing the importance of systems-level research in the cogni-
tive sciences. Although a few such cognitive architectures
do model spatial mechanisms in navigation space
(Harrison & Schunn, 2003; Schultheis & Barkowsky,
2011; Sun & Zhang, 2004), they all run in simple, noise-
free environments. According to a comparative table of
cognitive architectures (Samsonovich, 2011) available in
updated form online,3 there is currently no cognitive archi-
tecture implementing both Bayesian update and an empir-
ically validated, psychologically plausible ‘cognitive map’
at the same time.

In this paper, we report results of a project taking an
interdisciplinary approach towards developing cognitively
plausible spatial memory models able to function in realis-
tic environments, despite sensory noise and spatial com-
plexity; motivated by the above-mentioned gaps in the
literature. We provide an overview of previous work, in
which we proposed probabilistic mechanisms of
navigation-scale4 spatial cognition which are both imple-
mentable in brains and can reproduce behaviour data,
models on Marr’s (Poggio & Marr, 1977) algorithmic level,
and their computational implementations in realistic envi-
ronments, such as high-fidelity robotic simulations or phys-
ical environments.

Results of this model and its embodiment on a simu-
lated Boston Dynamics Atlas robot, and comparison with
human behaviour data, has been published before in Madl,
Franklin, Chen, Montaldi and Trappl (2016). As opposed
to focusing on results and substantiation, the purpose of
the current paper is to motivate and describe in greater
detail a computational computational framework and
robotic architecture facilitating real-world functionality as
well as cognitive plausibility.

Situated within the computational sub-fields of cognitive
science (cognitive modelling and cognitive architectures),
the goal of this work was to contribute to the understand-
ing of information processing in human cognition. As such,
although it is computational in nature, the extent of its suc-
cess is determined by its ability to predict and explain the
kinds of behaviour data it is intended to model, as well
as its consistency with established findings in psychology
and neuroscience. It is not aiming to maximize the accu-
racy of learned spatial representations, unlike robotics.
Neither does it aim for neurobiological fidelity at the

2 In our usage of the terms, a computational model is ‘psychologically
plausible’ (or ‘cognitively plausible’) to the extent that it is consistent with
psychological findings and can accurately reproduce psychology data, i.e.
behaviours. Analogously, it is ‘biologically plausible’ (or ‘neurally
plausible’) to the extent that it is consistent with neuroscience and can
reproduce neural data, e.g. single-cell recordings or brain imaging results.

3 http://bicasociety.org/cogarch/architectures.htm.
4 Human cognition needs to keep track of the space of navigation as well

as the spaces immediately around the body (e.g. reachable objects) and of
the body (e.g. body-part configurations). Although uncertainty and noise
play are important in the latter two spaces as well, we will confine
ourselves to navigation-scale spatial mechanisms in this work.
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cellular level or below. Although building on neuroscien-
tific evidence, our concern is modelling spatial information
processing on Marr’s algorithmic level of analysis (Marr &
Poggio, 1976; Poggio & Marr, 1977), as opposed to e.g.
biological neural networks - see Table 1 below.

2. Probabilistic models of space in brains and minds

Although the focus of most of this work is on the com-
putational modelling of behaviour data, we would like the
employed mechanisms to be plausibly implementable in the
parts of the brain they functionally correspond to. Apart
from the lack of neuronal-level evidence that the hip-
pocampal complex may perform Bayesian inference or
even represent uncertainty, the possibility of the implemen-
tation of such a mechanism given the anatomical and elec-
trophysiological constraints of this network of brain cells is
also unclear.

Below, we briefly review probabilistic neural spatial
models which have been proposed in the literature (see
Madl et al. (2015) for a more general review of computa-
tional cognitive models of spatial memory). We start with
normative models of dealing with spatial uncertainty,
which derive optimal solutions to the problem a system
might be solving (Marr’s computational level). We then
continue describing mechanistic (implementation level)
models which might facilitate these, and their consistency
with what is known about the hippocampal complex. More
extensive reviews of Bayesian models in brains can be
found in Pouget, Beck, Ma, and Latham, 2013; Vilares
and Kording (2011). There is currently little experimental
support for any of the proposed neural-level uncertainty
representations.

Models of probabilistic estimation of spatial informa-
tion have been pioneered by Bousquet, Balakrishnan, and
Honavar (1997), who suggested to use a Kalman filter to
model localization in the hippocampus. A Kalman filter
is a dynamic Bayesian inference algorithm for estimating
the values of unknown, not directly observable variables
(such as location) from noisy observations, yielding statis-
tically optimal estimates if the noise is normally distributed
(Kalman, 1960). MacNeilage, Ganesan, and Angelaki
(2008) also put forth arguments for dynamic Bayesian
inference as a model of spatial orientation. They mention
both Kalman filters and particle filtering (a related Baye-
sian filtering algorithm using samples instead of parameters

to represent probability distributions), but leave the ques-
tion of their neural implementation open. Particle filter-
based models of localization on the algorithmic level have
been suggested by Fox and Prescott (2010) and Cheung,
Ball, Milford, Wyeth, and Wiles (2012). Osborn (2010)
went beyond self localization, suggesting a Kalman filter-
ing approach to also account for localizing objects in the
environment. Recently, Penny, Zeidman, and Burgess
(2013) argued that if one presupposes the existence of
‘observation’ and ‘dynamic’ models,5 required by Kalman
filters, one might as well extend the inference to also use
them for model selection (‘which environment am I in?’),
motor planning (‘how do I get to place X?’), and to con-
struct sensory imagery (‘what does place X look like?’) in
addition to localization. They have combined these func-
tions in a single probabilistic model, and argued that it is
consistent with findings of pattern replay in the brain. An
even more general probabilistic formulation based on
dynamic Bayesian inference is the Free-Energy Principle
(Friston, Kilner, & Harrison, 2006), which aspires to pro-
vide a unified theory of brain function, and has been
argued to be consistent with aspects of hippocampal pro-
cessing (Friston, Mattout, & Kilner, 2011).

Despite their considerable theoretical elegance, the
above-mentioned models do not provide a final and com-
plete answer to the motivating question of this work, which
can be summarized as: ‘how does biological cognition learn
representations of navigation space from noisy sensors in
an uncertain world?’, for two reasons. First, none of them
try to reproduce or show quantitative consistency with
either behavioural or neural data concerning spatial cogni-
tion (although qualitative consistency with anatomical and
neural findings is pointed out by the authors). Although
these models provide explanations, their predictions
regarding spatial processing have not been quantitatively
evaluated.

Second, in addition to the lack of quantitative valida-
tion, their neural implementation is not known, and far
from straightforward. For example, implementing the
kinds of large matrix inversions and multiplications
required by Kalman filters (Kalman, 1960) is easy on a
computer, with centrally coordinated, serial, ‘fast’ compu-
tations, but difficult with the kind of distributed, parallel,

Table 1
Investigating spatial mechanisms on Marr’s (1976) levels of analysis. The present work is mostly concerned with the second level.

# Level of analysis Description In this work

1. Computational What problem(s) does the system solve, and why? Localization, Map error correction, Map structuring

2. Algorithmic/

Representational

How might it solve them? (Using what representations and
processes?)

Cognitive models of spatial memory

3. Implementation How is it implemented physically? Place, grid, head- direction, border cells, . . . (Hartley et al.,
2014)

5 Observation models and dynamic models are mathematical functions
mapping from true states to observed states, and from pre-motion to post-
motion states, respectively.
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‘slow’ (on the level of single neurons, which only spike up
to a few dozen times per second) computation performed
by the brain. In the domain of world-centered,
navigation-scale spatial mechanisms, any suggested neural
implementation has to conform with not only the limita-
tions imposed by biological neural networks, but also with
the specific connectivity and activity observed in the hip-
pocampal complex, in order to be considered biologically
plausible.

In addition to such normative models, a number of
mechanistic (implementation-level) models of how uncer-
tainty and inference could be implemented in brains have
also been proposed. They can be roughly grouped into
three categories - see Pouget et al. (2013) and Vilares and
Kording (2011) for reviews. We briefly summarize these
groups below, together with their consistency with what
is known about the hippocampus.

� Probabilistic population codes (PPC) (Ma, Beck,
Latham, & Pouget, 2006) encode probability distribu-
tions in the logarithmic domain by means of a set of
coefficients of corresponding exponential basis func-
tions, each coefficient encoded by the activity (spike
count) of a neuron. They assume neural variability is
independent and Poisson-distributed. However, hip-
pocampal neurons exhibit more variability than a Pois-
son process (Fenton & Muller, 1998; Barbieri, Quirk,
Frank, Wilson, & Brown, 2001). Also, if Bayesian infer-
ence were implemented in the hippocampus via a PPC,
the encoded probability distributions would strongly
depend on the firing rate of hippocampal neurons:
increased firing rates should mean decreased levels of
uncertainty. But empirically, this is not the case - for
example, firing rates increase with movement speed
(Maurer, VanRhoads, Sutherland, Lipa, &
McNaughton, 2005), which would mean the lowest
uncertainties when running fastest (however, faster
movements are harder to control and should thus lead
to higher uncertainty).
� Instead of an encoding in the logarithmic domain, codes
in which firing rates are proportional to probabilities
have also been proposed, e.g. by Koechlin, Anton, and
Burnod (1999) and Barber, Clark, and Anderson
(2003). The problem with their implementation in hip-
pocampal neurons is that the firing rates of these neu-
rons are also influenced by factors unrelated to
probability, such as where the animal is headed
(Ferbinteanu & Shapiro, 2003) or trial dependent fea-
tures (Allen, Rawlins, Bannerman, & Csicsvari, 2012),
and can change substantially if either the shape or col-
our of an environment is altered (Leutgeb et al., 2005).
These influences would strongly interfere with the out-
come of the Bayesian inference, if it were implemented
in a code that directly utilizes firing rates.
� Sampling-based codes represent probability distribu-
tions with a set of samples drawn from them (Fiser,
Berkes, Orbán, & Lengyel, 2010). They are asymptotically

correct with infinitely many samples, and approxima-
tions otherwise. Apart from being able to represent com-
plex, multi-modal distributions, not having to rely on
any fixed-form parametrization such as Gaussians, this
also allows reducing their accuracy and computational
demands by restricting the number of samples used. This
property has been used e.g. by Shi, Griffiths, Feldman,
and Sanborn (2010) to explain the deviations from the
statistical optimum in an exemplar model of a reproduc-
tion task. It is difficult to make a general statement as to
the implementability of this class of models in the hip-
pocampal complex, as there is a wide variety of sug-
gested concrete neural implementations in non-spatial
domains (Sanborn (2015) provides a review), and some
applied to navigation space, e.g. Fox and Prescott
(2010) and Cheung et al. (2012). None of them have
been quantitatively validated by neural (electrophysio-
logical) measurements, although most of them are sup-
ported by behavioural observations.

How the brain might encode and utilize uncertainty is
still an open question (Pouget et al., 2013), but based on
the observations regarding the hippocampus outlined
above, we argue that a sampling-based code is most suit-
able in this brain area; in terms of violating as few empir-
ical observations as possible. We have provided
electrophysiological evidence of Bayesian inference from
single neurons, as well as a possible sampling-based mech-
anism, in Madl, Franklin, Chen, Montaldi, and Trappl
(2014).

3. A computational framework for real-world capable models

of spatial memory

As mentioned in Section 1, the goal of this work was
bringing computational cognitive models closer to being
able to function in realistic environments under conditions
of uncertainty, by proposing probabilistic models of spatial
cognition which are implementable in brains. Probabilistic
models have become successful and widespread in domains
requiring the representation and manipulation of uncer-
tainty, including artificial intelligence (Russell & Norvig,
2009), robotics (Thrun, Burgard, & Fox, 2005), and
machine learning (Bishop, 2006). They have also been suc-
cessfully employed in cognitive modelling (Chater et al.,
2010) and in neuroscience (Knill & Pouget, 2004)
- although there is little empirical evidence for particular
neural implementations of probabilistic mechanisms as of
yet (Griffiths, Kemp, & Tenenbaum, 2008; Vilares &
Kording, 2011; Pouget et al., 2013).

This section outlines the computational methods
employed in an effort to implement a cognitively plausible
computational model of spatial memory. Results of this
effort, and comparisons with human and animal data, have
been previously published in Madl, Franklin, Chen,
Montaldi and Trappl (2016); this paper focuses more on
the framework, its implementation, motivation
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(also reviewing other probabilistic approaches in litera-
ture), instead of reporting the results or the particular inte-
gration with the LIDA6 cognitive architecture (although
we briefly outline this integration in Section 3.6). Fig. 1
shows an overview over all employed methods, and the
way they were utilized to support the spatial model and
mechanisms. Fig. 2 connects these computational mecha-
nisms to their suggested implementation in brains. Argu-
ments and evidence for the neuroscientific plausibility of
this kind of Bayesian localization have been described in
detail in Madl et al. (2014).

To be able to plan novel routes in pursuit of its goals, an
agent (whether biological or artificial), at a minimum,
needs to be able to localize itself, its goal, and possible
obstacles; and needs to do so in the face of a noisy and
inaccurate sensory apparatus. From a probabilistic per-
spective, this localization problem can be described as a
Bayesian network (see Fig. 2B). In order to avoid having
to perform calculations over every location ever visited,
and every landmark ever observed, as done in many
robotics solutions (Durrant-Whyte & Bailey, 2006; Bailey
& Durrant-Whyte, 2006), we split it into sub-problems.

Specifically, an approximate solution of this problem
can be split into Bayesian cue integration for integrating
noisy observations into a location estimate (Madl et al.,
2014), Bayesian localization for maintaining this location
estimate through time, and maximum likelihood-based cor-
rection for fixing the most recent location estimates when

revisiting a location (Madl, Franklin, Chen, Montaldi &
Trappl, 2016). We suggest a rejection sampling-based algo-
rithm for the former two, implementable through coinci-
dence detection in hippocampal place cells7 (Madl et al.,
2014), and a gradient descent-based solution for the latter,
implementable by reverse replay in the hippocampus
(Madl, Franklin, Chen, Montaldi & Trappl, 2016). We
have presented empirical evidence for these claims in those
papers, both from single-neuron recordings in live animals
and from behavioural experiments performed online with
participants recruited from Amazon’s Mechanical Turk.8

These mechanisms help inferring spatial locations in the
environment from noisy observations, in a neurally and
psychologically plausible fashion, as we argue in Madl
et al. (2014) and Madl, Franklin, Chen, Montaldi and
Trappl (2016) and below. However, in a system operating
under limited time and resources, these locations also need
to be stored efficiently, such that they can be rapidly
accessed. Hierarchical representations facilitate such desir-
able properties, and have been argued to be prevalent in
human cognition (Cohen, 2000; Gobet et al., 2001). There
is strong evidence that human spatial memories in particu-
lar are organized hierarchically (Hirtle & Jonides, 1985a;
McNamara et al., 1989; Greenauer & Waller, 2010), but
the principles underlying these structures have not been
known. We have suggested a Bayesian nonparametric clus-
tering model for structuring object representations under a
subject-specific metric to account for human cognitive map
structure; and have presented empirical evidence for this

Fig. 1. Overview of a computational framework for cognitively plausible, real world capable spatial memory mechanisms, (top half) and empirical
validation from various sources of data (bottom half). Gray boxes contain data/code used to substantiate or implement some models, but not gathered/
implemented by the authors. The borders around the localization (blue) and correction (red) mechanisms have the same color as in Fig. 2 to indicate
correspondence. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6 LIDA is an acronym for Learning Intelligent Distribution Agent
(Learning IDA), where IDA is a software personnel agent hand-crafted
for the US Navy that automates the process of finding new billets (jobs)
for sailors at the end of a tour of duty. LIDA adds learning to IDA and
extend its architecture in many other ways.

7 Place cells are neurons in a brain area called hippocampus, which
exhibit spatially localized firing, and are heavily involved in representing
spatial locations (Moser, Kropff, & Moser, 2008).
8 https://www.mturk.com.
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claim gathered from virtual reality and real world environ-
ments in Madl, Franklin, Chen, Trappl, and Montaldi
(2016).

These probabilistic models for inferring self locations
and object locations and structuring their representations
constitute the pillars of a cognitive software agent able to
function in a realistic robotic simulator, which provides
the same interfaces as a real robot (and would allow this
agent to run on a real robot without modifications to its
code) (Rusu, Maldonado, Beetz, & Gerkey, 2007). We have
implemented this agent within the LIDA (Learning Intelli-
gent Distribution Agent) cognitive architecture, extending
it with a spatial memory module and the described proba-
bilistic models, integrating them with the other mechanisms
already implemented in LIDA (Madl, Franklin, Chen,
Montaldi & Trappl, 2016). The LIDA integration is briefly
described in Section 3.6 below. Describing it in detail is
outside the scope of this paper, but see Madl, Franklin,
Chen, Montaldi and Trappl (2016) as well as the review
on LIDA by Franklin, Madl, D’Mello, and Snaider (2014).

Fig. 2 provides an overview over how the Bayesian
mechanisms summarized above may be implemented in

spatially relevant brain areas, and pointers to previous
work substantiating these connections; lending credence
to our claim that our probabilistic models are neurally
plausible (implementable in brains). Madl et al. (2014) pro-
vides the first neural-level evidence for Bayesian inference
in these brain areas.

3.1. Probabilistic modelling

Probabilistic models use probability distributions to rep-
resent quantities and the uncertainties associated with
them, utilizing probability theory to manipulate these dis-
tributions (Ghahramani, 2015). Two basic rules provide
the foundation, and together yield Bayes’ theorem, which
underlies Bayesian modelling. The sum rule takes the form

pðY Þ ¼
X
X

pðY ;X Þ; ð1Þ

where pðX ; Y Þ is the joint probability of random events X
and Y both happening, and the summation is over all val-
ues which Y could possibly take. pðX Þ is also referred to as
the marginal probability, and the summation in Eq. (1) is

Fig. 2. Probabilistic spatial localization and mapping implementable by brains. A: Neural correlates of localization. PRC: Perirhinal cortex, PHC:
Parahippocampal cortex, EC: Entorhinal cortex (see Madl et al. (2015) for details; and (Deshmukh & Knierim, 2013) for evidence of landmark vector
cells). B: Probabilistic graphical model of the simultaneous localization and mapping problem (Thrun & Leonard, 2008). Instead of capturing all
correlations introduced through the landmarks, which requires vast computational resources, our model separately solves Bayesian localization with only
local landmarks, and map correction (‘pose optimization’ in SLAM) with only loop closure constraints (locations of revisited landmarks). C: Illustration
of firing fields during localization. Coloured dots represent spikes of the respective cells at specific locations. Path integration (grid cells) and boundary and
landmark information (border cells, landmark vector cells) is integrated in place cells, using coincidence detection (which can implement rejection
sampling) to obtain a near-optimal location estimate. This new estimate is used to update grid cell representations via phase reset to combat accumulating
path integration errors (see Madl et al., 2014). D: Illustration of a small loop (firing fields 1-6) which can be corrected upon recognizing the same landmark
at positions 1 and 6 via reverse replay, by reactivating place cells 6-1 and shifting their place fields proportionally (see Madl, Franklin, Chen, Montaldi and
Trappl, 2016).
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also called marginalization (which is especially useful to
make inferences about variables of interest by summing
out all other variables). The product rule states that

pðY ;X Þ ¼ pðY jX ÞpðX Þ ¼ pðX jY ÞpðY Þ; ð2Þ
where pðY jX Þ is the conditional probability (i.e. the proba-
bility of Y given X). Combined, they yield Bayes’ theorem:

pðY jX Þ ¼ pðX jY ÞpðY Þ
pðX Þ ¼ pðX jY ÞpðY ÞP

Y pðX ; Y Þ : ð3Þ

In the context of a probabilistic model, defined by a num-
ber of parameters encoded in Y (such as the current coordi-
nates of an agents location), and given some observed data
encoded in X (such as the distances to landmarks), we can
use Eq. (3) to calculate a posterior probability distribution
of model parameters, combining prior knowledge (or
assumptions) pðY Þ with the likelihood pðX jY Þ.

The sections below summarize computational-level solu-
tions to the problems required for real-world spatial cogni-
tion outlined in Section 1. As mentioned there, the goal of
this work is contributing to the understanding of spatial
information processing in brains and minds, and not find-
ing particularly accurate solutions to these problems.
Numerous algorithms capable of much more accurate
localization and mapping and making less restrictive
assumptions have been proposed in probabilistic robotics
(Thrun et al., 2005), more specifically simultaneous local-
ization and mapping (SLAM) - see Thrun and Leonard
(2008), Durrant-Whyte and Bailey (2006), and Bailey and
Durrant-Whyte (2006) for reviews and Tuna, Gulez,
Gungor, and Mumcu (2012) for a more recent evaluation.

Our particular computational-level solutions for esti-
mating locations utilize strong simplifications and are
therefore less accurate compared to the state of the art in
SLAM. We are applying existing computational and math-
ematical tools to cognitive and neural mechanisms, follow-
ing a long and successful history of this approach in the
field of computational cognitive modelling (Sun, 2008),
which can be seen as a branch of applied computer science.
In this field, simplicity and approximations can be assets;
since humans are unlikely to use computationally complex,
optimal statistical models (see e.g. Van Rooij, 2008; Simon,
1955). A simpler, sub-optimal model which nevertheless
explains empirical data better, and is more consistent with
neural anatomy, is better suited to modelling cognition
than an intractable or implausible optimal model. The
implementation of these abstract methods in a way consis-
tent with the neuroscience and psychology of spatial mem-
ory is novel, as is their integration with a comprehensive
cognitive architecture and their substantiation with empir-
ical data (for comparison with human and animal data, see
Madl, Franklin, Chen, Montaldi & Trappl, 2016).

3.2. Bayesian cue integration

One concrete application of Eq. (3) is the inference of
the most likely current location of an animal, given some

observations regarding the distance of a number of land-
marks. For simplicity, we assume (1) a uniform prior over
these observations, and (2) conditional independence of the
observations given the location. The posterior probability
of the current location pðxjOÞ, given a location prior pðxÞ
and some observations o1; . . . ; oN 2 O (and a normalization
constant c), is

pðxjOÞ ¼ pðxÞpðOjxÞ
pðOÞ ¼ cpðxÞpðOjxÞ ð4Þ

The prior can be obtained by adding up self-motion
signals (a process called ‘path integration’ or dead
reckoning - see Madl et al. (2015). Individual observation
distributions can express distance measurements to
landmarks, and can be multiplied due to their conditional
independence given the location:

pðxjOÞ ¼ cpðxÞ
YN
i¼1

pðOijxÞ: ð5Þ

For now, we further assume that each of these variables
is normally distributed. We have used this simplified for-
mulation to predict the sizes of place cell firing field in
Madl et al. (2014); but implemented our localization model
without this restrictive assumption, based on rejection sam-
pling (see next section - if all types of noise were Gaussian,
the formulations would be functionally equivalent, but the
sampling model performs better if this is not the case). The
Gaussian assumption makes it straightforward to derive
the variance SL of the normal/Gaussian posterior location
distribution pðxjOÞ ¼ N ðx; lL; SLÞ from the variances of
the prior and of the likelihood distributions Sx and So;i

(see e.g. Wu (2004) for the derivation of the parameters
of products of Gaussian distributions) (see Fig. 3):

SP ¼ S�1x þ
XN
i¼1

S�1o;i

 !�1
: ð6Þ

In the one-dimensional case, the variance is the square
of the standard deviation r. We can say that the standard
deviation of a Gaussian distribution is a measure of the
‘uncertainty’ associated with it (as it measures the spread
among possible values - the more certainly a value is
known, the lower the associated r of the distribution
describing it). Assuming that the observation uncertainties
ro;i depend linearly on the respective distances di, such that
ro;i ¼ s � di (Madl et al. (2014) provide justifications and
evidence for this linear relationship), we obtain the stan-
dard deviation of the location posterior for a given set of
measurement distances:

rP ðd1; . . . ; dN Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�2x þ s

XN
i¼1

d�2i

 !�1vuut : ð7Þ

Madl et al. (2014) use Eq. (7) to test the hypotheses that
place cells may represent uncertainty and perform Bayesian
cue integration. Although place cells constitute a
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two-dimensional representation, this one-dimensional
treatment of observation likelihoods is an acceptable
approximation in the kinds of environments from which
the data was collected (rectangular boxes without land-
marks, where the axes can be assumed to be independent
as they are orthogonal, and a very narrow, circular track
with landmarks, where the width can be neglected as it is
less than 3% of the length).

3.3. Bayesian localization

To maintain a location estimate through time, the kind
of cue integration described above has to be performed reg-
ularly (after every time step). One source of location infor-
mation is adding up each movement vector, a process
called odometry in robotics and ‘path integration’ in cogni-
tive science and biology. However, movements are not
accurate and noise free in real-world environments - each
movement vector contains a slight error, and these errors
add up over time. Eventually, these accumulating errors
render the location estimate useless, if sensory information
is not used to correct it.

Bayesian localization is concerned with correcting the
location estimate in time using noisy observations
(Thrun et al., 2005). Conceptually, it entails performing
the Bayesian cue integration to correct location esti-
mates recursively, after every movement/time step. Its
operation can be summarized in three stages, which
are performed iteratively at every time step: (1) move-
ment (adding the current movement), (2) correction of
the location estimate via Bayesian cue integration, and
(3) updating of the path integration estimate for use
in the next iteration.

Unlike the simplified treatment above, which has con-
sidered only one snapshot in time, Bayesian localization
considers the posterior at any time step t. This posterior
distribution has to depend on all movements until now:
m1:t, on all observations until now: O1:t, as well as the loca-
tions of known landmarks l1:N . Extended by these depen-
dencies, the posterior location distribution from Eq. (4)
becomes

pðxtjm1:t;O1:t; l1:N Þ ¼ cpðOtjxt; l1:NÞpðxtjm1:tÞ; ð8Þ
through simple application of Bayes’ theorem. We can use
the sum rule (with the sum replaced by an integral for deal-
ing with continuous distributions) to model the ‘path inte-
gration’ (odometry) mechanism which provides the prior in
Eq. (8):

pðxtjm1:tÞ ¼
Z

pðxtjxt�1;mt�1Þpðxt�1jm1:t�1Þdxt�1: ð9Þ

This equation allows inferring the current location prior
based on the most recent movement mt�1 and on the previ-
ous location estimate xt�1 by marginalizing (integrating
out) the previous location. This is a recursive formulation
which yields a path integration estimate based on a starting
location and a number of movements. This estimate is sub-
ject to accumulating errors. However, crucially, the cor-
rected previous location estimate (previous posterior) can
be used instead of the uncorrected previous path integra-
tion estimate. Using this insight, replacing pðxt�1jm1:t�1Þ
in Eq. (9) by the previous location posterior
pðxt�1jm1:t�1;O1:t�1; l1:NÞ and plugging the resulting prior
into Eq. (8) yields

pðxtjm1:t;O1:t; l1:N Þ ¼ cpðOtjxt; l1:NÞ �
Z

pðxtjxt�1;mt�1Þ
� pðxt�1jm1:t�1;O1:t�1; l1:N Þdxt�1 ð10Þ

This recursive equation for updating location estimates
is a Bayes-optimal solution to the localization problem
and allows inferring the current location based on two con-
ditional densities: a model specifying the effect of move-
ments on the location (a ‘motion model’):

pðxtjxt�1;mt�1Þ ð11Þ
and a model specifying the probability distribution of the
current measurements Ot at a position xt given the land-
marks l1:N (a ‘sensor model’):

pðOtjxt; l1:N Þ: ð12Þ

Fig. 3. Bayesian cue integration for localization. Illustration of how an animal might use its prior location belief (blue) estimated from its movement, and
distance distributions e.g. to a boundary (green) to obtain a corrected location estimate (red) using Bayesian inference. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Eq. (10) is the mathematical formulation of Bayesian
localization, which, conceptually, iterates over the three
stages mentioned above: movement (application of the
motion model), correction (via Bayes’ theorem), and
update.

As argued in Madl et al. (2014) and Madl (2016), the
activity of hippocampal place cells can be viewed as sam-
ples from probability distributions, and the size of their fir-
ing fields can be partially predicted by a Bayesian model.
We will also argue based on existing evidence that the
‘motion model’ is implemented by a neural path integrator
in the entorhinal cortex, and that neurons with boundary-
related firing might implement the ‘sensor model’.

Such a sampling-based representation of uncertainty in
these spatially relevant brain areas naturally suggests
employing a sequential Monte Carlo method (Doucet,
Godsill, & Andrieu, 2000) to computationally evaluate
the integral in Eq. (10) (the same model using samples
for representation might as well use them for inference).
Although the usual method of choice in robotics is impor-
tance sampling (Montemerlo & Thrun, 2007; Thrun et al.,
2005), we approximate the integral using rejection sam-
pling (Doucet et al., 2000), and have argued in Madl
et al. (2014) and Madl (2016) that coincidence detection
(CD) in hippocampal place cells can implement this mech-
anism (since CD can filter out samples at locations where
different measurements and path integration disagree, and
keeps the ones where they agree - see illustration in
Fig. 2C, and the Appendix in Madl (2016) for mathemati-
cal details).

From a computational point of view, instead of infer-
ring the parameters of the location posterior distribution
(e.g. the mean and variance in case of a Gaussian), we rep-
resent it by sampling multiple location hypotheses. The
mean of these hypotheses corresponds to the ’best guess’
estimate, and their standard deviation to the associated
uncertainty. Apart from the empirical evidence for sam-
pling based mechanisms in the brain (see Madl et al.
(2014), as well as Fiser et al. (2010) for a more general
review), the main advantage of this approach is the ability
to represent free-form distributions (irregular, non-
Gaussian, multimodal distributions, etc.).

Particles (samples, hypotheses) xi are generated regu-
larly based on self-motion information (linear and angular
movement speed v) according to the motion model (Eq.
(11)), performing path integration at simulated timesteps
Dt. In the simplest case: xi

t ¼ xt�1 þmt, with mt ¼ T ðv0DtÞ,
and T simply transforming from polar (linear and angular
speed) to Cartesian coordinates. Gaussian noise is multi-
plied to the estimated speed to obtain a distribution of
hypotheses reflecting the path integration/odometry uncer-
tainty (neither animals nor robots can estimate their move-
ment speed with perfect accuracy):

v0 ¼ vtrue � N 1;
r2
v 0

0 r2
x

" # !
ð13Þ

where r2
v and r2

x are model parameters representing the
variance in the linear and angular speeds, respectively.
Since the estimate of v is noisy, accumulating errors
would lead to an increase of uncertainty and the cor-
ruption of the distribution represented by the set of par-
ticles, which is why correction with the sensor model is
required.

Under Gaussian assumptions, this correction can be
implemented simply by multiplying a path integration
prior and a number of sensory likelihoods and solving
for the means and variances (Eq. (5)). The ensuing algo-
rithm for Bayesian localization is trivial. When using
samples instead of a Gaussian to represent the poste-
rior, the correction can be implemented by rejection
sampling (Doucet et al., 2000), i.e. by deleting hypothe-
ses inconsistent with sensory measurements (see Fig. 4).
The derivation of why this rejection sampling scheme
approximates the true Bayesian posterior can be found
in the Appendix in Madl (2016). Details regarding
how brains could implement this algorithm are discussed
in Madl et al. (2014).

3.4. Map error correction

Landmark location estimates can be updated in the
same way as the agents’ location estimates x, by integrating
new observations into the posterior distribution represent-
ing these locations (either in the form of Gaussians or of
samples from this distribution). With infinitely many parti-
cles, the algorithm presented in Fig. 4 would suffice to
maintain correct location estimates.

However, there are practical limits on the particle bud-
get (due to limited computational resources in computers,
and due to limited firing rates in neurons). This necessarily
leads to errors whenever there is no particle at the unob-
servable true location. Unfortunately, these errors add up
as well. They become most pronounced when revisiting
an already known part of the environment, i.e. when
traversing a loop - although the agent has returned to its
starting location, it will think that it is at a new location,
and form new representations of the same place. Multiple
such loops can lead to multiple redundant, erroneous rep-
resentations.

Algorithm 3.1. MOVEMENT (samples,v,N)

1: prevmean mean(samples)
2: newsamples {}
3: for each particle 2 samples
4: newsamples newsamples [
{motionModel(particle, v)}
5: while count(newsamples) < N

6: newsamples newsamples [
{motionModel(prevmean, v)}
7: return(newsamples)
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Algorithm 3.2. CORRECTION (samples,O,L)

1: newsamples {}
2: for each particle 2 samples
3: likelihood sensorModel(particle, O, L)
4: if random() < likelihood

5: newsamples newsamples [ {particle}
6: return(newsamples)

Algorithm 3.3. LOCALIZEposteriorsamp,v,O,L,N

1: movedsamp movement(posteriorsamp, v, N)
2: correctedsamp correction(movedsamp,O,L)
3: return(correctedsamp)

The problem of how to correct spatial representations
when revisiting a known place (not only the location esti-
mate but also the estimated recent path and landmark loca-
tions) is the ‘loop closing’ problem in robotics (see e.g.
Williams et al., 2009; Thrun & Leonard, 2008). Brains need
to solve this problem as well - although human spatial rep-
resentations are not perfectly accurate, humans are able to
correct mistaken estimates when they recognize a revisited
place. Interestingly, despite the abundant robotics litera-
ture on the topic of closing loops, this problem has been
largely neglected in cognitive science literature.

Our cognitive model of loop closing is described in more
detail in Madl, Franklin, Chen, Montaldi and Trappl
(2016). Here, we will briefly summarize its purely computa-
tional and mathematical aspects. We will assume that it is
sufficient to correct the route taken during the loop, i.e. the
most recent locations of the agent; and that the landmarks
are corrected by the same amount as the location closest to
them. That is, when performing large-scale loop closing,
the model in Madl, Franklin, Chen, Montaldi and Trappl
(2016) applies the same correction to a position and the
local landmarks around it (a simplification justified based
on neuroscientific evidence in that paper). We also make
the assumption that correction only concerns position rep-
resentations and not angular representations, once again

based on neural evidence. Hippocampal ‘reverse replay’
(Carr, Jadhav, & Frank, 2011) (the re-activation of recently
active place cells) is a plausible mechanism for correcting
the recent route when revisiting a location, as argued in
Madl, Franklin, Chen, Montaldi and Trappl (2016), but
such a mechanism has not been found for neurons with
direction-specific firing.

When revisiting a known place, the recently traversed
path has to be corrected using the discrepancy between
the previously and recently estimated location of the revis-
ited place. Naturally, when an agent recognizes that it is in
the same place it has visited before, the current estimate has
to be reset to be equivalent to the previous estimate of the
same location. However, it is not obvious how to correct
the other recently visited locations x0; . . . ; xm 2 X along
the recent path X. Let c1; . . . cm 2 C denote a set of vectors
we will call constraints, each expressing how far apart two
locations should be according to some measurement. That
is, each constraint specifies the difference between two loca-
tions c ¼ xa � xb, and each is associated with a measure-
ment uncertainty Sc in the form of the covariance matrix
of a normal distribution. For locations traversed in
sequence, c and Sc is given by the motion model (by path
integration). For revisited locations, c is zero (there should
be no difference between the location estimated when
encountering that place first and when revisiting it).

According to Bayes’ theorem, and assuming that con-
straints are independent given the locations, the recent path
depends on the product of the constraint distributions; and
the best path estimate is the one that maximizes:

PðX jCÞ /
Ym
i¼1

PðcijX Þ ð14Þ

Each P ðcijX Þ expresses the likelihood that this constraint
is satisfied by the path X, as a Gaussian distribution:
PðcijX Þ / N ðxa � xb; ci; SiÞ (where xa and xb are the loca-
tion estimates which should have the distance ci according
to this constraint). We are interested in the maximum of
Eq. (14), which is equivalent to the minimum of its negative
logarithm. Let d i ¼ xa � xb � ci be the discrepancy
between the constraint and the locations it concerns within
the path. With noise-free measurements, all di would be

Fig. 4. Bayesian localization algorithm with rejection sampling, producing updated posterior samples given the samples from the previous posterior, speed
vector v and observations O at the current time step, landmarks L, and a particle budget N. Bottom: possible neuronal implementation using coincidence
detection (Madl et al., 2014; Madl, Franklin, Chen, Montaldi & Trappl, 2016).
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zero; but since sensory errors may add up, there will be dis-
crepancies (e.g. after traversing a loop, the estimate of the
first visit xa and second visit xb may differ, but ci ¼ 0 for
the revisited place). Then, the most likely path is given by:

Xml ¼ arg max
X

PðX jCÞ ¼ arg min
X

� logP ðX jCÞ

¼ arg min
X

Xm
i¼1
kd ikS�1i

: ð15Þ

Eq. (15) mathematically describes the maximum likelihood
error correction problem for loop closing. It tries to mini-
mize the discrepancies between the constraints and the esti-
mated locations, taking into account the constraint
uncertainties Si by utilizing the Mahalanobis distance9 to
measure the discrepancy.

There are several ways to solve Eq. (15). For our cogni-
tive model, we chose sequential gradient descent, because it
can be implemented in biological neurons (Bengio, Lee,
Bornschein, & Lin, 2015b; Bengio, Lee, Bornschein, &
Lin, 2015a). Olson, Leonard, and Teller (2006) derive the
starting point for this solution. They suggest the following
gradient with respect to constraint i, depending on a learn-
ing rate a, a full Jacobian J of the constraints with respect
to the path, and the Jacobian J i of constraint i:

DX � aðJS�1JÞ�1JT
i S
�1
i d i: ð16Þ

Because of the incremental structure of the Jacobian, it
is possible to simplify this expression (as first proposed by
Olson et al. (2006) - see also Madl, Franklin, Chen,
Montaldi & Trappl (2016)). Making use of this structure,
and defining a loop precision parameter Ai ¼ Si=SP specify-
ing the ratio of the uncertainties of loop closure constraints
(added when revisiting a place) and path integration con-
straints, the gradient for each individual location within
the loop becomes:

Dxj � adi

P j
k¼aþ1S

�1
iPminðj;bÞ

k¼aþ1 S
�1
P

¼ aAid ipj; ð17Þ

where pj ¼ ðminðj; biÞ � ai � 1Þ=ðbi � ai � 1Þ denotes how

far xj lies along the loop, with 0 6 pj 6 1. Unlike usual gra-

dient descent procedures, in this particular case we know
that Dx 6 d i must hold, and can prevent the algorithm
from overshooting, accelerating its convergence.

Fig. 5 contains the algorithm using this gradient to cor-
rect location estimates when revisiting a place, based on the
equations above. This algorithm is straightforward to
implement in a cognitively plausible model (as well as in
neural networks, using a variant of error backpropaga-
tion). We have used this solution in Madl, Franklin,
Chen, Montaldi and Trappl (2016) to account for human
cognitive map accuracy, as a part of a cognitive architec-
ture embodied on a robot and learning maps in realistic
simulated environments.

3.5. Bayesian nonparametrics for map structuring

It has been suggested that map-like spatial representa-
tions are structured hierarchically (Hirtle & Jonides,
1985a; McNamara et al., 1989; Greenauer & Waller,
2010), but no formal model has been put forth for a process
that might account for this structure. We hypothesized in
Madl, Franklin, Chen, Trappl, and Montaldi (2016) that
this process might be clustering. Computationally, we
chose a Dirichlet Process Gaussian Mixture Model (DP-
GMM) to account for the behaviour data we collected
(see Madl, Franklin, Chen, Trappl, & Montaldi, 2016;
Madl, 2016), for two reasons. First, DP-GMMs (unlike
most clustering algorithms) are able to infer the number
of clusters, not just cluster memberships; and are infinitely
extensible (Rasmussen, 1999). Second, Bayesian nonpara-
metric models with Dirichlet priors have a successful his-
tory in psychological modelling, e.g. of category learning
and causal learning (Tenenbaum, Kemp, Griffiths, &
Goodman, 2011), transfer learning (Canini, Shashkov, &
Griffiths, 2010), and human semi-supervised learning
(Gibson, Rogers, & Zhu, 2013). See Fig. 6 for an overview
of the proposed metric learning and clustering mechanism
for structuring (clustering) objects on cognitive maps.

Algorithm 3.4. CORRECTX ; constraints; a;A;N

1: while i < N and not converged
2: i++
3: for each a,b 2 constraints

4: d  Xa � Xb

5: for each j 2 ða; b�
6: p  ðminðj; bÞ � a� 1Þ=ðb� a� 1Þ
7: b minðaA � d; dÞ
8: X j  Xj þ bp
9: return(X)

By ‘map structure’, we mean sub-map memberships in
this work. There is evidence that human spatial maps are
hierarchical (Hirtle & Jonides, 1985a; McNamara et al.,
1989; Greenauer & Waller, 2010), just as geographical
maps are - e.g. there is a map of the country and a map
of the cities therein; and any given building may be repre-
sented not only on the country map but also on one of the
city maps. Similarly, any object (e.g. building) memorized
by a participant belongs to her map-like spatial representa-
tion (‘cognitive map’), as well as to one of its sub-maps. We
only consider a two-level hierarchy (map and sub-maps);
thus, sub-map memberships fully describe our modelled
map structure.

A number of features can influence spatial representa-
tion structure, including spatial distance and visual and
functional similarity of landmarks. The importance of
these features varies across participants, and these
subject-specific importances have to be accounted for
before the clustering process. We chose to implement a
new metric learning method to do so (see below). Our

9 The Maha l anob i s d i s t an c e i s d efined a s kx1�x2kS ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�x2ÞT Sðx1�x2Þ

q
.
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model of spatial representation structure consists of these
two components: a subject-specific metric, expressing the
‘similarity function’ between two buildings, and the DP-
GMM model for clustering buildings under this metric.

Unlike the rest of our work, we have not shown what
the neural implementation of such a structuring process
might look like. Some prior work exists showing the possi-

bility of inference in hierarchical Bayesian models such as
the DP-GMM, e.g. Shi and Griffiths (2009) - see Sanborn
(2015) for a review. We have substantiated the psycholog-
ical plausibility of this model by showing that it can explain
and predict human behavior data (Madl, Franklin, Chen,
Trappl, & Montaldi, 2016), and leave the investigation of
the biological plausibility of this specific mechanism for
future work.

3.5.1. Dirichlet process Gaussian mixture models for

clustering

We will only describe the DP-GMM model very briefly,
since it is a well-established model and since we did not
implement it ourselves in this work (we used the bnpy
Python library instead). See e.g. Rasmussen (1999) for its
introduction, or Gershman and Blei (2012) for a tutorial.
The DP-GMM partitions a number of data points x into
K clusters by fitting a mixture of K Gaussian distributions
to the data. It infers the number of clusters, as well as the
means lk and covariances Rk of each Gaussian, by invert-
ing the generative process defined as follows:

/k � Betað1; a1Þ
lk � Normalð0; IÞ
Rk � WishartðD; IÞ
pk � SBP ð/Þ
xt � Normalðlzi ;R

�1
z;i Þ;

ð18Þ

where SBP stands for the stick-breaking process for gener-

ating mixture weights: pk ¼ vk
Qk�1

j¼1 ð1� vjÞ. Data can be

generated from this model by first choosing a cluster with

Fig. 6. Structuring cognitive maps. Panel A: A subject might group (co-represent) the two coffee shops together (buildings 3 and 4), even if they are
spatially farther apart from each other than to other houses; i.e. (3) and (4) are psychologically closer (more similar) for that individual than (2) and (4).
Panel B: the idea of some features being more important than others when grouping objects can be formally captured by defining a metric dMetric reflecting
the subject’s psychological similarity by weighting features appropriately. Panel C: Left: based on a participant’s known map structure, a probabilistic
model (Gaussian Discriminant Analysis, GDA) can be trained which can predict the probability of two buildings being co-represented, given their feature
differences. Right: These probabilities from a trained GDA model can be taken as similarities and used as the distance metric for a psychological space
model. As in the linear models above, map structure predictions for new environments are made by clustering under the learned metric using
nonparametric DP-GMM clustering. (Figure adapted from Madl, Franklin, Chen, Trappl, and Montaldi, 2016.)

Fig. 5. Algorithm for correcting location estimates when revisiting places
(‘loop closing’), producing a corrected path given the estimates of
locations X along that path (from Bayesian localization), a list of loop
constraints indicating the same (revisited) places (from landmark recog-
nition or place recognition), a learning rate a, a loop precision parameter
A and an iteration budget N. Due to the iteration over each position
representation, this mechanism can easily be implemented in neural
networks propagating errors (just such a propagation mechanism has been
observed in hippocampal place cells, called ‘reverse replay’).
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probabilities specified by mixture weights: z � CatðpÞ, and
then drawing an observation from the parameters of that
cluster x � Normalðlz;RzÞ.

Given the data, the parameters of this model (i.e. the lz

and Rz describing each cluster, and the cluster memberships
z of the data points) can be inferred using either a Monte
Carlo chain sampling method (Neal, 2000) or variational
inference (Blei & Jordan, 2006). We did not implement
an inference algorithm in this work; instead, we have used
the bnpy Python library for this purpose. See Hughes and
Sudderth (2013) for implementation details.

3.5.2. Metric learning in absolute pairwise difference space

In order to learn a suitable metric for our data, we had
to develop a novel metric learning method, since the
assumptions made by existing methods do not hold in
our case. Neither the linear separability assumption (made
by linear metric learning), nor the prerequisite of roughly
isotropic variances along the features (made by RBF-
based methods Ong, Williamson, & Smola, 2005) is the
case for all subjects in our dataset (see Appendix E for fur-
ther motivation and evaluation from a machine learning
perspective).

Furthermore, our metric can naturally incorporate the
hypothesis that building pairs belonging to the same repre-
sentation should be located close to the origin in pairwise
difference space (i.e. they should not be very different),
and should be separable from building pairs belonging to
different representations. These two distributions of pair
differences can be naturally modelled using Gaussian distri-
butions (Madl, Franklin, Chen, Trappl, & Montaldi,
2016).

Our proposed method can be seen as a novel approach
to perform non-linear metric learning using weak supervi-
sion in the form of pairwise constraints, in order to
improve clustering performance, as pioneered by Xing,
Jordan, Russell, and Ng (2002). The problem to be solved
can be defined as follows. Let X ¼ ðxi; . . . ; xnÞ be the fea-
ture vector representation of n objects (buildings on a cog-
nitive map) which are to be clustered (assigned to

representations we will call ‘sub-maps’), where xi 2 RD

are vectors with D dimensions. Let the set of m given
labelled pairwise co-representation constraints be denoted
by C, where jCj ¼ m, and ci;j 2 C is

ci;j ¼
1; if i and j belong to the same sub-map

0; if i and j belong to different sub-maps

�
ð19Þ

Our ultimate goal is to group the n objects into K clus-
ters (‘sub-maps’), such that objects of the same cluster are
more similar to each other than to those of different clus-
ters; taking into account the provided pairwise constraints
to learn a good similarity metric for the given data. In our
application of this method to spatial representation struc-
ture, the pairwise constraints express which pairs of build-
ings are co-represented in participants’ memory, and are

obtained from recall sequences (using the assumption that
co-represented items are always recalled together) - see
Madl, Franklin, Chen, Trappl, and Montaldi (2016).

Conventional approaches leveraging non-linear metric
learning for this problem try to find a kernel U such that
the clustering resulting from using the distance metric

defined by that kernel, d2
mðx1; x2Þ ¼ ðUðx1Þ � Uðx2ÞÞT

ðUðx1Þ � Uðx2ÞÞ, does not violate the provided constraints
(ensures co-represented pairs are closer than other pairs,
if possible), and often employ RBF kernels for this pur-
pose, e.g. Baghshah and Shouraki (2010) and Chitta, Jin,
Havens, and Jain (2011).

In contrast, the proposed framework aims to learn the
distribution of co-representation probabilities (whether or
not two object should be linked) from the provided set of
constraints, and constructs a pseudo-metric based on a
generative model of co-representation probabilities. Cru-
cially, this probabilistic model is defined on the vector
space of absolute pairwise differences (APD), which allows
learning the importance of each feature (a challenge for
RBF kernels for data with non-isotropic variance). Learn-
ing in APD space has been proposed before by Zheng,
Gong, and Xiang (2011) (specifically for person re-
identification in computer vision), but not as a general met-
ric learning method. The metric based on this generative
model is a pseudo-metric, because it does not satisfy the
conditions of subadditivity, dmðx; zÞ 6 dmðx; yÞ þ dmðy; zÞ
and the identity of discernibles, dmðx; yÞ ¼ 0 if and only if
x ¼ y.

Let ½Dxi;j�þ ¼ jxi;k � xj;kj
� �m

k¼1 be the representation of

each pair of objects ði; jÞ in APD vector space. The co-
representation probability distribution, i.e. the posterior
probability of any pair of objects belonging to the same
cluster, given a pair of objects and some model parameters
h is then

pðc ¼ 1jDx; hÞ / pðDxjc ¼ 1; hÞpðc ¼ 1jhÞ ð20Þ
The likelihood pðc ¼ 1jDx; hÞ, the model parameters

h(as well as the prior) can be estimated from X and C, even
in closed form, using Gaussian Discriminant Analysis
(GDA). This yields a suitable non-linear pseudo-metric
based on this probability distribution - see Eq. (21) -, such
that objects likely to belong to the same cluster will be
close, and those likely to belong to different clusters will
be far apart; with these distances directly depending on
co-representation probabilities.

dmðx1; x2; hÞ ¼ 1� pðc ¼ 1jDx; hÞ ¼ pðc ¼ 0jDx; hÞ ð21Þ
A metric is well-suited for clustering if within-cluster

instances are closer than across-cluster instances according
to it. That is, if for any co-represented Dxr and not co-
represented Dxn it holds that drðxr;1; xr;2; hÞ <
dnðxn;1; xn;2; hÞ. It follows from Eq. (21) that this is the case
if the generative model learns to separate the absolute dif-
ferences of within-cluster instance pairs from across-cluster
pairs.
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In the generative GDA model (Bensmail & Celeux,
1996), the likelihoods of a pair of instances either being
co-represented (i.e. belonging to the same sub-map), or
not being co-represented (i.e. belonging to different sub-
maps) are each modelled using a multivariate Gaussian:

pðDxjc ¼ i; li;RiÞ ¼ ð2pÞ�
D
2 jRij�

1
2 e�

1
2ðDx�liÞ|R�1i ðDx�liÞ; ð22Þ

where i 2 f0; 1g. ðl1;R1Þ are the means and covariances of
the APD distances of co-represented pairs, and ðl0;R0Þ
those of not co-represented pairs. These parameters can
be easily estimated from the given sets of co-represented
and not co-represented object pairs, respectively, by calcu-
lating their means and covariances. These object pairs
(obtained from recall sequences - see Madl, Franklin,
Chen, Trappl, & Montaldi, 2016) constitute the training
data for the model.

From Eq. (22) and Bayes’ theorem, we obtain the poste-
rior probability required for the metric in (21), which then
becomes:

dmðx1; x2; hÞ ¼ 1� pðDxjc ¼ 1; l1;R1ÞP
i2f0;1gpðDxjc ¼ i; li;RiÞ ð23Þ

Thus, the trained GDA-model can be used to calculate
distances (Eq. (23)) between all pairs of objects in any test-
ing data set. The data is projected under the metric in Eq.
(23) using distance-preserving embedding. We have used
multi-dimensional scaling (MDS) for this purpose (Borg
& Groenen, 2005). The result of this projection is a data
set embedded such that Euclidean pairwise distances
therein, prescribed by Eq. (21), reflect the structure in the
data (close for co-represented and far for not co-
represented objects).

We subsequently perform clustering of this resulting
data, using a Dirichlet Process Gaussian Mixture Model
(DP-GMM) (Rasmussen, 1999), since the number of clus-
ters is unknown (see previous section). The resulting algo-
rithm for structuring map representations is shown in
Fig. 7. It requires training data in the form of pairs of
co-represented and not co-represented buildings and their
features. It allows inferring the metric in closed form and
without any hyperparameters that need to be tuned (unlike
most metric learning approaches). We use this algorithm to
predict the representation structure of participants’ cogni-
tive maps in advance in Madl, Franklin, Chen, Trappl,
and Montaldi (2016) (and briefly evaluate its performance
on other kinds of data in the Appendix of Madl, 2016).

We point out that in addition to its utility in modelling
human spatial memory structure, Eq. (21) constitutes a
general framework for metric learning using any model
capable of producing probability estimates that two
instances belong together. This includes the entire family
of generative models in machine learning (see e.g. Bishop,
2006), as well as any discriminative model when combined
with Platt scaling (Platt, 1999) for transforming discrete
outputs into probabilities. Constrained clustering is just
one application of such a metric - approaches for metric

learning have been used for a wide range of tasks including
face and activity recognition, text and music analysis,
microarray data analysis, etc. (Kulis, 2012) (see the appen-
dix in Madl (2016) for a brief evaluation of the proposed
metric on constrained clustering benchmarks).

Algorithm 3.5. PREDICTMAPSTRUCTUREX, knownX,
knownStructure

3.6. Integration with a cognitive architecture

The mechanisms described above constitute a general
computational framework for spatial learning and memory
for cognitive models and architectures. In order to evaluate
a particular instantiation, we have integrated them with the
LIDA cognitive architecture and with the Robot Operating
System. We report results and comparisons with behaviour
data in Madl, Franklin, Chen, Montaldi and Trappl
(2016); here, we briefly summarize the method of integra-
tion. LIDA (Learning Intelligent Distribution Agent) is a
systems-level cognitive architecture (Franklin et al., 2014)
devoted to explaining how minds work, where a mind is
taken to be a control structure for an autonomous agent
(Franklin & Graesser, 1999). LIDA is best conceived of
as operating via an iterative, overlapping sequence of cog-
nitive cycles, where each cycle is composed of three phases:

� The understanding phase, where sensory features are
perceived and used, together with cued items from
long-term memories, to update a preconscious under-
standing of the agent’s current situation.

1: corepresented {}
2: notcorepresented {}
3: for i 2 ð1; jknownX jÞ
4: for j 2 ðiþ 1; jknownX jÞ
5: if knownStructurei ¼ knownStructurej
6: corepresented corepresented
[ðknownX i � knownX jÞ

7: else

8: notcorepresented  notcorepresented
[ðknownX i � knownX jÞ

9: lco  meanðcorepresentedÞ
10: Rco  covðcorepresentedÞ
11: coprior jcorepresentedj

jknownX j
11: lnot  meanðnotcorepresentedÞ
12: Rnot  covðnotcorepresentedÞ
13: notprior jnotcorepresentedj

jknownX j
14: D 2 RjX jxjX j

15: for i 2 ð1; jX jÞ
16: for j 2 ðiþ 1; jX jÞ
17: Di;j 1� coprior�N ððX i�X jÞ;lco ;RcoÞ

coprior�N ððX i�X jÞ;lco ;RcoÞþnotprior�N ððX i�X jÞ;lnot ;RnotÞ
18: embedding  MDSðDÞ
19: structure DPGMMðembeddingÞ
20: returnðstructureÞ
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� The attention phase, during which the most salient
(important, urgent, insistent, novel, unexpected, mov-
ing, bright, loud, etc.) aspects of the current situation
are selected and broadcast globally to all the modules
of the system as the contents of consciousness.
� The action/learning phase enables these conscious con-
tents to recruit resources for the next action and to exe-
cute them, as well as to instigate and modulate learning
in each of the various learning modules.

Each LIDA module both operates internally, and inter-
acts with other modules, asynchronously (with some excep-
tions Franklin et al., 2014), leading to the overlapping
iterative sequence of cognitive cycles. Each LIDA module
is typically distinguished by the data structures (representa-
tions) it employs, and by the task accomplished by its
processes.

The LIDA model is embodied (De Vega, 2008), so that
the understanding phase of its cognitive cycle properly
begins with sensors. LIDA’s Sensory Memory collects data
from the agent’s sensors, both internal and external,
extracts low-level features from them, and passes these on
to both the Perceptual Associative Memory (PAM)
(Hofstadter & Mitchell, 1994), LIDA’s recognition mem-
ory, and to the preconscious Workspace. PAM’s content
is represented by a digraph whose nodes denote objects,
actions, feelings, events, categories, etc., and whose links
designate relationships between them. Various structures
built from items and relationships in PAM serve as data
structures (representations) for almost all of LIDA’s mod-
ules. Items and relationships recognized in PAM from the
input from Sensory Memory are sent to the Workspace.

Structures upon arrival in the Workspace cue each of sev-
eral long-term memories, bringing local associations from
them back into the Workspace. These memories include
PAM, Spatial Memory (storing size and location, including
relative location, of objects), Declarative Memory (episodic
memory, storing events, including the what, (pointers to)
the where, and the when, and including Semantic Mem-
ory), and Transcient Episodic Memory (memory of events
that decays within a few hours or a day) (Conway, 2001).
The Structure Building Codelets modules stores structure
building codelets, small, single purposes processes that
operate on structures in the Workspace, including building
new items and relationships from input from Sensory
Memory, categorization, noting causality and affordances,
and creating options and mental images. Together, the
modules described in this paragraph, their contents and
processes, contribute to the understanding phase of
LIDA’s cognitive cycle. The attention and the action selec-
tion phase are less relevant for the implementation of a spa-
tial memory mechanism, and will not be described in detail
here (but see Franklin et al., 2014).

In brains, hippocampal place cells encode animals’ cur-
rent location in the environment, as well as providing
object-place associations (Moser et al., 2008). Their equiv-
alent in LIDA was implemented via a special type of PAM
nodes, ‘place nodes’, each of which represent a specific
region in the environment, and which reside in the Work-
space (as part of the Current Situational Model). Place
nodes can be associated with objects perceived to be at that
particular location via PAM links – for example, agents’
self-representation (‘self’ PAM node) can be associated
with the place node representing their most likely location

Fig. 7. Algorithm for predicting participants’ spatial representation structure, given the features of the new buildings to be structured, and given buildings
with known structure (from a previous experiment) specifying which of these buildings were co-represented.
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(which needs to be regularly updated). They are also ini-
tially connected recurrently to all their neighbours via
PAM links. This has been argued to be a plausible connec-
tivity pattern of the hippocampus (Moser et al., 2008;
Csizmadia & Muller, 2008; Samsonovich &
McNaughton, 1997).

Any PAM node in the Workspace representing currently
or recently perceived objects (obstacles, landmarks, goals,
etc.) in LIDA’s Workspace can be associated via PAM
links with spatial locations represented by place nodes. A
node structure comprised of such object nodes, association
links, and place nodes together constitute a ‘cognitive
map’. Multiple ‘cognitive maps’ can be used within the
same environment in a hierarchical fashion. (There can
be maps and sub-maps on different scales and resolutions,
and relative position and containment relations between
them.) This is consistent with neural and behavioural evi-
dence that the human cognitive map is structured
(Derdikman & Moser, 2010) and hierarchical (Hirtle &
Jonides, 1985b) (see Madl, Franklin, Chen, Trappl, &
Montaldi (2016) for more extensive literature and evi-
dence). It should be mentioned that the regular grid-like
pattern of these place nodes, imposed for computational
simplicity, is not biologically realistic, as no regularities
have been found in the distribution of firing fields of place
cells. (However, a regular grid has been observed in the
EC.)

Although these maps are temporary, created and
updated in the Workspace, they can be stored in the Spatial
Memory module. This module contains a variant of Sparse
Distributed Memory (SDM), similarly to LIDA’s Episodic
Memory, and allows the storage of complex structures
(such as the above-mentioned hierarchical cognitive maps,
in the form of trees) via a recently developed extension to
SDM (Snaider & Franklin, 2014).

Cognitive maps are assembled and updated by
structure-building codelets (SBC) in the Workspace
(LIDA’s pre-conscious working memory). Each of these
SBCs addresses a computational challenge associated with
endowing an autonomous agent with spatial capabilities
(see Fig. 8):

� The ‘Object-place SBC’ associates recognized objects
with place nodes, making use of distance information
from stereo disparity to infer their approximate position
and size.
� The ‘Boundary SBC’ detects boundaries in the Work-
space, removing links at the locations of these bound-
aries (currently performed at the boundaries of
recognized roads), only leaving links between traversa-
ble places (facilitating planning).
� The ‘Localization SBC’ is responsible for updating the
link between the Self PAM node and the place node rep-
resenting the agents most likely current position in the
environment, using Bayesian inference to combine spa-
tial cues.

� The ‘Map correction SBC’ corrects the map (closes the
loop) based on revisited locations (see next section).
� The ‘Map structure SBC’ spawns new cognitive maps
from parts of the current map, based on the proximity
of objects represented on a map, in a process resembling
clustering.
� The ‘Route plan extraction SBC’ extracts shortest routes
if a goal representation is present in the Workspace.

The Localization SBC performs Bayesian cue integra-
tion and localization, as described in Sections 3.2 and
3.3. The Map correction SBC implements the algorithm
outlined in 3.4, and corrected maps are structured by the
Map structure SBC using the approach described in 3.5.
Route planning is achieved by propagating activation out-
wards from the goal through the interconnected place node
network, and implementing a simple gradient following
algorithm (always move towards the neighboring place
node with the highest activation) (Madl, Franklin, Chen,
& Trappl, 2013). For more information on the visual object
recognition, road following, and integration with further
mechanisms, see Madl, Franklin, Chen, Montaldi and
Trappl (2016).

4. Limitations and missing mechanisms

Tables 2 and 3 summarize the processes and representa-
tions involved in spatial navigation in biological cognition.
The first columns provide overviews of these mechanisms
and representations, based on Fig. 1 in Wolbers and
Hegarty (2010). The second column indicates the corre-
sponding mechanism in our final LIDA-based model, as
described in Madl, Franklin, Chen, Montaldi and Trappl
(2016). The rightmost column highlights some major ele-
ments missing from the models presented here but required
for spatial navigation.

In addition to mechanisms and representations playing
an important role in spatial navigation but not yet imple-
mented in our model (Tables 2 and 3), there are several
shortcomings of our models, which we outline in this Sec-
tion. They can roughly be grouped into three categories:
computational shortcomings, psychological implausibili-
ties, and neural implausibilities.

4.1. Computational shortcomings

We have pointed out above that the goal of this work
was not to optimize for performance (but rather computa-
tional cognitive modelling), and that these problems can be
solved more optimally and accurately, given enough com-
putational resources. Accuracy and performance of spatial
representations are the goals of Simultaneous Localization
and Mapping (SLAM) in mobile robotics (Thrun &
Leonard, 2008).

State of the art solutions to the SLAM problem can
infer robot and landmark locations down to a few centime-
tres accuracy or better, but usually require 5–25% of the
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Fig. 8. Extensions to add spatial abilities to LIDA. From the bottom left, clockwise: the LIDA-ROS interface transmits image and depth information
(from stereo disparity) from the robot’s cameras to Sensory Memory (SM). Object recognition is performed by a convolutional neural network in EPAM
(Extended PAM), which pass activation to recognized PAM nodes representing objects. These can be associated with place nodes corresponding to their
most likely location in the Workspace (determined using the mean of the samples representing their location probability distributions). Place nodes, links
between them, and object associations constitute ‘cognitive maps’, and are constructed, updated, and organized by Structure Building Codelets (SBCs).
Place nodes with enough activation to be broadcast consciously can be learned as long-term SDM representations; and can recruit route-following
behaviours in Procedural Memory and Action Selection, leading to the execution of a low-level action in Sensory-Motor Memory (SMM), which is
transferred to ROS via the LIDA-ROS interface. Figure from Madl, Franklin, Chen, Montaldi and Trappl (2016).

Table 2
Cognitive mechanisms involved in spatial navigation, based on (Wolbers & Hegarty, 2010). *: an ability of our model making use of existing
implementations (in the LIDA cognitive architecture or the Robot Operating System).

# Mechanism In our model Not implemented

Spatial computations

Space perception Limited (depth from stereo disparity*) Estimating size, shape, movement, orientation, . . .
Self-motion perception Surrogate: odometry* Motor efference, proprio- ceptive & vestibular senses

Translation btw. ego- and allocentric
reference frames

Limited: Perspective projection via homography* Plausible translation mechanism

Computing directions and distances to
unseen goals

Route plan SBC (following gradient on a
hierarchical grid)

Explicit direction estimation, systematic errors in
estimation

Imagining shifts in spatial perspective – Sensory imagery

Executive processes

Novelty detection – Perceptual recognition of known or novel places
Selection and maintenance of

navigational goals
Attention codelets* & global broadcast* in LIDA’s

cognitive cycle
Reward representations, reinforcement learning

Route planning or selection Route plan SBC (following gradient on a
hierarchical grid)

Expectation violation/ confirmation monitoring, re-
planning, homing. . .

Uncertainty/Conflict resolution Partial: Bayesian integration Conflicting cues, cues other than odometry &
estimated distance

Resetting mechanisms Partial: maximum likelihood correction Kidnapped robot problem
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processing power of a current Intel Core i7-3630QM CPU
to do so (Santos, Portugal, & Rocha, 2013), even when just
mapping a small room, which amounts to 4–20 billion
floating point operations per second.10 Achieving the same
in large-scale outdoor environments would require even
more computational resources.

Fig. 9 shows the structure of modern end-to-end SLAM
systems (Wang, 2015), such as e.g. Newman et al. (2011).
Components depending on the specific sensors and actua-
tors (‘front-end’) are usually separated from the sensor-
independent optimization part (‘back-end’). In our final
model, the ‘front-end’ roughly corresponds to Bayesian
localization, and the ‘back-end’ to that of the map correc-
tion. Both functionally correspond to hippocampal place
cells, with the former mechanism partially implemented
by coincidence detection, and the latter through reverse
replay.

The two main computational shortcomings compared to
modern SLAM include (1) not explicitly modelling rota-
tions (thus avoiding non-linearity caused by robots which
can turn), and (2) not explicitly optimizing landmark con-
straints (only path integration and loop closure con-
straints). These cause inferior localization and mapping
accuracy compared to modern SLAM. However, they have
allowed us to map Bayesian mechanisms to well-known
neural correlates and mechanisms, and to implement sim-

ple models successfully replicating behaviour data, while
still retaining the ability to tackle the uncertainty and noise
problem in a realistic robotic simulation.

Although brains may well be capable of the processing
power required by a SLAM system, it is unlikely that they
work the way modern SLAM solutions do (performing
thousands of linear algebra operations serially) (Thrun &
Leonard, 2008). Furthermore, human long-term memories
are far from being as accurate as these SLAM systems, as
shown e.g. in Madl, Franklin, Chen, Montaldi and Trappl
(2016), or by research regarding sketch maps, e.g. Rovine
and Weisman (1989) and Wang and Schwering (2009).
Nevertheless, there is value in looking at information pro-
cessing in brains through the lens of normative models, of
mathematical formulations of the problem to be solved;
and of their implementability in brains and minds.

4.2. Psychological implausibilities

Apart from implementation details (in brains and in
LIDA), on Marr’s (1976) algorithmic level, three major
mechanisms were suggested in this work: (1) a cue integra-
tion mechanism for localization, (2) correction of cognitive
maps when re-visiting places, and (3) cognitive map struc-
turing through clustering. Despite their ability to fit beha-
vioural data as reported in Madl et al. (2014), Madl,
Franklin, Chen, Montaldi and Trappl (2016), and Madl
(2016), there are some psychological findings which are
inconsistent with these mechanisms.

Fig. 9. Components of a modern end-to-end SLAM system. From Wang (2015).

Table 3
Representations involved in spatial navigation, based on Wolbers and Hegarty (2010).

# Representation In our model Not implemented

Online representations

Self-position and orientation ‘Self’ PAM node –
Egocentric self-to-object directions and distances Limited (depth from stereo disparity*) Egocentric vectors (e.g. ‘reach

vectors’ in area 5a)
Allocentric object-to-object directions and distances Indirect (on map representation, but not perceptually) Allocentric visuo- spatial

representations
Route progression ‘Route’ PAM nodes Expectations
Navigation goals ‘Goal’ PAM nodes Rewards

Offline representations

Memories of local views and places Partial (in pre-conscious working memory, not yet in
long-term memory)

Long-term memory representations

Enduring, hierarchical representations of an
environment (ego-/allocentric)

Hierarchical maps consisting of ‘place nodes’ Hierarchical egocentric
representations

Networks of habitual routes Context-action-result chains in Procedural Memory* –

10 Based on Intel i7 specifications, retrieved from http://download.
intel.com/support/processors/corei7/sb/core_i7-3600_m.pdf.
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First, our models have focused on adult cognition, and
have ignored developmental findings. Visual spatial inte-
gration progressively improves in children between 5 and
14 years of age (Kovacs, Kozma, Feher, & Benedek,
1999). Spatial cue integration, while close to the Bayesian
optimum in adults, seems to require a long developmental
process; and children do not seem to integrate spatial cues,
instead switching between exclusively using path integra-
tion or landmark information from trial to trial (Nardini
et al., 2008). It is difficult to model this behaviour in our
Bayesian framework.

Furthermore, phenomena observed in environments
with competing cues (e.g. landmarks), where the informa-
tion from the cues is not integrated, are also difficult to
model in our probabilistic framework. Examples include
‘overshadowing’ (where the effect of a cue on an animal’s
behaviour may be reduced or eliminated when another,
more salient cue is introduced) and ‘blocking’ (where a sec-
ond cue is added after an animal has been trained with the
first, but the animal cannot use the second cue without the
first) (Chamizo, 2003). Some evidence of landmark over-
shadowing and blocking in humans exists, e.g. Spetch
(1995) and Prados (2011), and it has been argued that
unlike the role of boundaries, associative reinforcement
(and not a map-like representation) may be a better expla-
nation for landmark learning (Doeller & Burgess, 2008).

Navigation based on two complementary systems run-
ning in parallel (a cognitive mapping system using the
described mechanisms, and a reward-based associative
learning system based on LIDA’s procedural memory) is
conceptually consistent with blocking and overshadowing,
and may be able to explain these findings. We have not
implemented this computationally, however; and the extent
of cooperation/competition between these systems is not
yet clear, even on a theoretical level (Lew, 2011; Cheng,
Huttenlocher, & Newcombe, 2013).

In addition to the role of landmarks, a ‘geometric mod-
ule’ for navigation has been proposed, originally to explain
errors which would have been avoidable if perceptual as
opposed to geometric cues had been used (such as rats
learning there is food in the corner of a rectangular envi-
ronment, but often searching in the diagonally opposite
corner of the environment, which was geometrically - but
not perceptually - equivalent) (Cheng, 1986). Similar
geometry-based behaviour has been observed in young
children, e.g. by Huttenlocher, Newcombe, and Vasilyeva
(1999) (see also Cheng et al. (2013)). Recent findings cast
in doubt the existence of a dedicated geometric module
for orientation and navigation (Cheng, 2008). Neverthe-
less, empirical observations of such errors (which are con-
sistent with geometry-based orientation, but could be
avoided by making use of perceptual features/landmarks)
are inconsistent with our model, which does not make such
errors.

Other types of systematic errors in spatial representa-
tions have been pointed out in the literature which our
model does not account for in its current form. Distortions

result from the hierarchical organization in cognitive maps
(Tversky, 1992; Hirtle & Jonides, 1985a) - which, however,
could easily be incorporated into the model, given that it
already learns these hierarchies (all that is required is
implementing an error function/mechanism). However,
there are also systematic distortions of spatial representa-
tions which are not easily accounted for in this framework.
They include effects of perspective (where participants are
asked to imagine themselves when asked to estimate spatial
relations), of cognitive reference points (distance judge-
ments made from landmark A to building B usually differ
from those made from building B to landmark A), and
of detours or barriers (the length of circuitous routes is usu-
ally overestimated) - see Tversky (1992) and Tversky
(2003). Differences in viewpoints used when learning spa-
tial representations and when having to use them also cause
systematic errors (e.g. Shelton &McNamara, 2001; Shelton
& McNamara, 2004; Burgess, 2006) which have been
neglected by the current models.

Finally, the current model, when forced to explore very
large regions without being allowed to ever revisit known
places, can incur catastrophically large errors to its learned
representations, making the learned map largely useless (we
know of no such effect observed in humans). It is likely that
in very large scale environments, humans make use of sev-
eral parallel mechanisms including spatial reasoning, as
well as of prior knowledge of the structure of the environ-
ment (e.g. the usual shapes of roads), none of which have
been included in the model.

We note that to our knowledge, no current computa-
tional cognitive model of spatial memory achieves full con-
sistency with every empirical finding, while being capable
of running in realistic environments at the same time (see
review in Madl et al., 2015). We have argued that our
approach is a step in the direction of such a model, which
can be the case even if it does not support modelling some
known aspects of spatial cognition. As long as the basic
premises hold (that brains can represent uncertainty, and
can perform approximate Bayesian inference), and if the
shortcomings can be corrected in future models in a cogni-
tively plausible fashion, the probabilistic approach to spa-
tial cognition remains viable.

4.3. Neural implausibilities

In terms of consistency with neuroscientific findings, we
have to distinguish between the final computational cogni-
tive model based on the LIDA cognitive architecture (see
Section 3.6 and Madl, Franklin, Chen, Montaldi &
Trappl, 2016), and the suggested neural mechanisms
regarding uncertainty representation and error correction
in the hippocampus.

Regarding the final model integrated with a cognitive
architecture, LIDA aims to be a model of minds, not brains
(it is a model on Marr’s algorithmic level and not on his
implementation level). See Franklin, Strain, Snaider,
McCall, and Faghihi (2012) and Franklin et al. (2014) for
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discussions of the relationship between LIDA and the
underlying neuroscience. In terms of the spatial extensions
to LIDA, the biggest discrepancy compared to the neural
basis is the regular grid formed by the ‘place nodes’ (see
Section 3.6 and Madl, Franklin, Chen, Montaldi &
Trappl, 2016). Place cells do not seem to map the surface
of an environment in any systematic fashion (O’Keefe,
Burgess, Donnett, Jeffery, & Maguire, 1998). It would be
more accurate to think of ‘place nodes’ as combining sev-
eral underlying spatially relevant cell types, including
entorhinal grid cells, which do form regular grids (although
triangular and not rectangular) (Moser et al., 2008). Grid
cells also facilitate estimating directions and distances
(Bush, Barry, Manson, & Burgess, 2015). However, the
simple route planning strategy (based on spreading activa-
tion on hierarchical grids of place nodes) is not a faithful
model of navigation in the hippocampal-entorhinal com-
plex, as it relies heavily on a regular structure and on speci-
fic link weights depending on distances and obstacles. Bush
et al. (2015) reviews four more biologically plausible net-
work models on Marr’s implementation level. However,
LIDA is concerned with the algorithmic level - and there
is published behavioural evidence for such a mechanism
(Mueller, Perelman, & Simpkins, 2013). We have previ-
ously succeeded in replicating two multi-goal route plan-
ning datasets using our simple model (in virtual as well
as real environments - see Madl, 2016), which substantiates
its cognitive plausibility.

We omit discussing the neural plausibility of the map
structuring/ clustering model introduced above, since we
have not described any neural implementation of this
mechanism, and have only validated it behaviourally (but
see e.g. Shi & Griffiths (2009) or Sanborn (2015) for possi-
ble neural implementations of hierarchical Bayesian mod-
els, to which the DP-GMM belongs). It is, to our
knowledge, the first model able to predict spatial represen-
tation structure on the individual level; and developing a
biologically plausible implementation in addition to a nor-
mative and algorithmic model would have exceeded the
time available for this project.

The plausibility of the probabilistic framework for cog-
nitive modelling does require, at the very least, the possibil-
ity of neurally implementing Bayesian inference. To show
evidence of this possibility, we have compared the firing
of hippocampal place cells to predictions of a Bayesian
model, and have suggested they might be able to represent
uncertainty and perform approximately optimal inference
(Madl et al., 2014). These are hypotheses on the neuronal
level. As such, they can be compared to neuroscientific
findings - and they do seem to be inconsistent with some,
as summarized below.

First, humans with hippocampal lesions, although spa-
tially impaired, do seem to be capable of spatial navigation.
For example, (Teng & Squire, 1999) report a patient with
damaged medial temporal areas who was able to describe
routes, detours, and directions between landmarks in an
environment he has learned early, before the damage.

The authors suggest that the role of the hippocampus is
time-limited, mostly concerning consolidation, and that
long-term spatial memories are available after consolida-
tion even with a lesioned hippocampus. Similar observa-
tions of largely unimpaired topographical abilities in
patients with hippocampal damage were found by
Rosenbaum et al. (2000) and Rosenbaum, Gao,
Richards, Black, and Moscovitch (2005); although these
patients did show some types of impairments (few recalled
landmarks on sketch maps, no detailed geographical
knowledge, impaired landmark recognition).

A later study by Maguire, Nannery, and Spiers (2006)
reinforced the implication that although accessing long-
established spatial memories is still possible with a dam-
aged hippocampus, topographical knowledge of landmarks
and of the relationships between them is impaired. Natu-
rally, the ability to learn new spatial representations is also
heavily impaired. Nevertheless, some functionalities requir-
ing allocentric representations seem to be available to
patients with hippocampal lesions, which is problematic
for the ‘cognitive map’ hypothesis in general, as well as
for our model.

Second, the firing fields of place cells do not behave like
unique, one-to-one representations of location. Some place
cells (a minority) have more than one firing field (Burke
et al., 2011). Although usually there are geometric similar-
ities between the locations of these firing fields (Barry et al.,
2006), there are also cases where there seem to be no sys-
tematic commonalities (Park, Dvorak, & Fenton, 2011)
between them (e.g. similar distances to surroundings) as
would be predicted by a model using these firing fields as
probability distributions. Place fields are also not always
regular and elliptic, as prescribed by the simplest Gaussian
model used to model rat place cell firing in Madl et al.
(2014) (although this is not an issue for the particle filter-
based formulation described above, which can represent
multimodal distributions).

Furthermore, it is not always the case that place fields
close to boundaries have to be smaller than those further
away, as would be predicted if they solely represented
uncertainty. For example, firing fields of cells in dorsal hip-
pocampus are generally smaller than those of cells in more
ventral areas (Kjelstrup et al., 2008). There are also some
other phenomena observed in recordings from place cells
of behaving animals which do not easily fit into a proba-
bilistic model. These include remapping (Colgin, Moser,
& Moser, 2008) and theta phase precession (Skaggs &
McNaughton, 1996).

However, these inconsistencies do not falsify the possi-
bility of an approximate Bayesian inference mechanism
operating in the hippocampus in parallel with several other
mechanisms not accounted for (and in some cases inconsis-
tent with) such a mechanism. Brains exhibit a high degree
of redundancy, and there is no reason to assume that one
cell type only performs one function.

Over-reliance on only a single or few place cells inconsis-
tent with the statistical optimum could destroy the models
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functionality. But a larger ensemble of place cells, a major-
ity of which do represent location estimates and their asso-
ciated approximate uncertainty, can still facilitate
approximately optimal localization if the contradicting
information in the ensemble (representing other things,
such as an episodic memories (Tulving & Markowitsch,
1998)) is a minority. The approximate Bayesian place cell
hypothesis could be falsified if the number of place cells
used for localization, and having firing fields inconsistent
with Bayesian uncertainty predictions, could be shown to
be a majority. This does not seem to be the case in the
recordings and environments investigated in Madl et al.
(2014).

We can further support the claim of multiple parallel
hippocampal mechanisms, one of which might be approx-
imate Bayesian inference, using three observations. First,
the reasonably good fit of Bayesian predictions with empir-
ical place field sizes reported in Madl et al. (2014) would be
extremely unlikely to occur by chance, given that hundreds
of place fields were included in the comparison. Second,
our particle filter localization model is largely resistant to
artificially increasing or decreasing the variance of the sam-
ples at some places,11 which is a rudimentary way of sim-
ulating some place fields having a different size than
prescribed by a Bayesian model. Third, the uncertainties
predicted by a sampling-based localization model can also
successfully explain the frefquency distribution of place
field sizes, even when corrupted by location-unrelated sam-
ples (see comparison in the appendix of Madl, 2016).

Finally, in its current formulation, our model depends
on approximate multiplication of incoming signals (e.g.
from cells with border-related firing). We have shown that
coincidence detection can implement this multiplication
(Madl et al., 2014), pointing out that it has been observed
to occur in place cells (Jarsky, Roxin, Kath, & Spruston,
2005; Takahashi & Magee, 2009), and have argued that
the biophysical parameters of CA1 place cells seem to be
in the right range to facilitate multiplication up to an esti-
mated 5% error. However, a number of influential theories
of place cell firing propose thresholded summation instead
of multiplication in place cells. Notable and empirically
well-supported examples include grid field summation
models (Solstad, Moser, & Einevoll, 2006), and the Bound-
ary Vector Cell (BVC) model of place cell firing (Hartley,
Burgess, Lever, Cacucci, & O’keefe, 2000; Barry et al.,
2006). The former does not solve the accumulating path
integration error problem (Etienne, Maurer, & Séguinot,
1996), and is thus not suitable for real-world navigation
in its original form.

The BVC model serves a different purpose to our
model: it is an explanatory model relying on a large

number of parameters to achieve very good fit to a data-
set (several for each modelled place cell), whereas our
model is normative, arising from a single computational
principle and requiring very few parameters (only path
integration and measurement accuracies), at the cost of
less-than-perfect fit to the data. In terms of implementa-
tion, the key difference is that the BVC model suggests
place cell firing to depend on a thresholded sum of
BVC firing fields; whereas our model proposes approxi-
mate multiplication.

Any function can be approximated by summing a suffi-
cient number of parametrized Gaussians (Parzen, 1962), so
it is unsurprising that the BVC model can fit any firing
field; but it is less obvious that it can also successfully pre-
dict the responses of these fields to topographic changes in
the environment (Barry et al., 2006). Our model can fre-
quently make similar predictions with considerably fewer
parameters (Madl et al., 2014), but there are a number of
empirically observed place field responses to such changes
which are inconsistent with our model. Specifically, there
is a small number of place cell firing fields which become
bi-modal in larger environments (O’Keefe & Burgess,
1996). This is easy to explain using summation of two
Gaussians anchored to opposite walls in the environment,
but contradicts a multiplicative, strictly Bayesian
framework.

It is of course possible for a subset of place cells to have
a low membrane time and implement multiplication by
coincidence detection, as suggested in Madl et al. (2014)
and in Fig. 4, and for another subset with a higher mem-
brane time to implement summation as suggested by the
BVC model. In this way, the models could be complemen-
tary (with our model treating the minority of secondary fir-
ing fields as correctable noise). There is indeed more than
40% variation across place cells membrane time constants,
suggested to lie around 18:6� 8:1 ms (Szilagyi, Halasy, &
Somogyi, 1996), with other observations ranging from
16:6 ms in hippocampal area CA1 (Zemankovics, Káli,
Paulsen, Freund, & Hájos, 2010) to 23:2 ms or 23:6 ms in
CA3 (Johnston, 1981).

We have shown that these time constants facilitate cal-
culating Bayesian posteriors using approximate multiplica-
tion, with just 5% (at 16:6 ms) to 16% (at 23:6 ms) error
compared to the mathematically correct posterior in a
leaky integrate-and-fire spiking neuron model of place cells
(Fig. 7 in Madl et al., 2014). Of course, this does not prove
that real place cells multiply their inputs, but it shows that
they could (there is evidence that integrate and fire models
closely account for in vitro coincidence detection (Rossant,
Leijon, Magnusson, & Brette, 2011)). This is backed by
some empirical evidence, e.g. the observation that CA1
cells only exhibit stable firing when synchronously receiv-
ing spikes from perforant path and Schaffer-collateral
synapses, within 5–10 ms (Jarsky et al., 2005). This empir-
ically observed requirement of synchrony supports our
coincidence detection model, and is inconsistent with
summation.

11 In fact, adding random samples, independently from the Bayesian
prediction, was one of the early methods used in robotics to combat
‘particle depletion’ and to increase the chances of the robot being able to
recover its correct location in particle filter-based SLAM (Thrun et al.,
2005).
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Furthermore, the BVC model in its original form does
not always yield unambiguous location estimates and is
thus not sufficient for accurate localization on its own.
Together, these observations and the empirical evidence
for the two models support a view of them being comple-
mentary, rather than one precluding the other.

Yet another possibility is that the calculation of an
approximate location posterior is performed in a brain area
other than the hippocampus, such as the entorhinal cortex,
and that place cells simply constitute the output, in which
case they could perform summation as well as being consis-
tent with a Bayesian model. A similar suggestion has
recently been made by Hardcastle, Ganguli, and
Giocomo (2015), who suggest error correction occurs in
grid cells based on border cell input.

Based on the near impossibility of the strong correla-
tions between Bayesian predictions and recorded firing
field sizes arising merely by random chance across hun-
dreds of place cells (Madl et al., 2014), and on the mathe-
matical necessity of a correction mechanism for
accumulating location estimate errors, we have argued
for a probabilistic framework to model localization in bio-
logical cognition. We think this view has merit despite
some empirical phenomena inconsistent with it. Further
future experimental work will be necessary to isolate the
exact computational mechanism implemented by place
cells, to distinguish to what extent some or all of them
may sum or multiply their inputs, and to better understand
the role of multi-field place cells in spatial navigation.

5. Conclusion

We described a computational framework for develop-
ing cognitively plausible spatial memory models able to
function in realistic environments, despite sensory noise
and spatial complexity. We hypothesized that, in order to
maintain accurate location estimates despite sensory errors,
neurons involved in spatial representation, called hip-
pocampal place cells, might perform approximate Bayesian
localization and error correction. We proposed a sampling-
based code, together with a simple model for calculating
posteriors based on coincidence detection in spiking neu-
rons. We showed in previous work (Madl et al., 2014) that
using just two parameters, this model can explain a large
proportion of the variance in empirical firing field data,
as well as predicting firing field shape changes upon
changes in the environment. We also hypothesised an
extension of the Bayesian inference model which closed
the loop between grid cells (path integration), boundary
vector cells (obstacle representation) and place cells (loca-
tion representation and approximate Bayesian inference)
to facilitate continuous Bayesian state estimation over
time, and thus mitigate the problem of accumulating
errors, which makes non-Bayesian path integration models
prone to severe localization errors.

In addition, we also proposed a mechanism that is easily
implementable in the hippocampus, can solve the loop

closing problem, and may help explain why reverse replay
(the tendency of place cells associated with recently visited
locations to become re-activated in the inverse sequence of
visiting those places) may be necessary. Our Bayesian
model, extended with this neurally implementable loop
closing mechanism, was able to account for human spatial
memory accuracy in large scale virtual environments (mod-
elled closely after participants’ actual cities), as reported in
Madl, Franklin, Chen, Trappl, and Montaldi (2016).

Apart from the problem of uncertainty and accumulat-
ing errors, spatial representations have to be stored and
used efficiently in realistic environments, by using struc-
tured representations such as hierarchies (which facilitate
efficient retrieval and route planning). Evidence suggests
that human spatial memories are structured hierarchically,
but the process responsible for these structures has not
been known. Here, we described a model of (1) subject-
specific metrics (modelling psychological spaces), and (2)
a clustering model for grouping buildings within these
spaces. Our computational model was able to predict the
majority of participant’s map structures in advance, both
in virtual and in real environments, as reported in (Madl,
Franklin, Chen, Trappl, & Montaldi, 2016).

Simply using existing algorithmic solutions of proba-
bilistic localization, mapping, and clustering does not yield
viable models of cognition, since these differ from biologi-
cal cognitive processes in behaviour, computational
requirements, and available information. However, most
existing cognitive models of spatial memory, while plausi-
bly modelling cognition, are unable to deal with sensory
noise and uncertainty. In order to take a first step towards
filling this gap, we have proposed probabilistic computa-
tional cognitive models on Marr’s (1976) algorithmic level
for the following mechanisms:

� self-localization (‘where am I?’),
� object localization (‘where is this object?’),
� map correction after revisiting a place (‘I’ve been here
before - now how do I fix my map?’),
� multi-goal route planning (‘how do I get to these

places?’), and
� map structuring (‘which map does this object belong to?’).

Although these problems, with the exception of the last,
are well-known in robotics, we have provided the - to our
knowledge - first computational cognitive models which
(1) are implementable in brains, (2) can reproduce beha-
vioural data, (3) can be integrated with a cognitive architec-
ture and other cognitive processes, and (4) are able to
function in realistic environments with noise and uncer-
tainty (in a robotic simulation providing the exact same
interfaces as a real robot) - see Madl, Franklin, Chen,
Montaldi and Trappl (2016).

We have also shown, for the first time since the discov-
ery of hierarchical structure in human spatial representa-
tions (Hirtle & Jonides, 1985a), that such structures are
predictable based on spatial, perceptual, and functional
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properties of the environment. We have provided previous
evidence that Bayesian nonparametric clustering under a
subject-specific distance metric accounts for a large major-
ity of buildings belonging together in participants’ spatial
representations (Madl, Franklin, Chen, Trappl, &
Montaldi, 2016).

Our models extend the ‘Bayesian brain’ (Knill & Pouget,
2004) and ‘Bayesian cognition’ (Chater et al., 2010) para-
digms by taking one step towards navigation-space cogni-
tive representations and processes. We hope they will
encourage further research on coping with the challenges
posed by the real world in computational cognitive models
of spatial memory.
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Differences in subthreshold resonance of hippocampal pyramidal cells
and interneurons: The role of h-current and passive membrane
characteristics. The Journal of Physiology, 588, 2109–2132.

Zheng, W. S., Gong, S., & Xiang, T. (2011). Person re-identification by
probabilistic relative distance comparison. In 2011 IEEE conference on

computer vision and pattern recognition (pp. 649–656). IEEE.

172 T. Madl et al. / Cognitive Systems Research 47 (2018) 147–172

http://refhub.elsevier.com/S1389-0417(17)30098-0/h0680
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0680
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0680
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0685
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0685
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0690
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0690
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0690
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0690
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0695
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0695
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0700
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0700
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0700
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0705
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0705
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0705
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0710
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0710
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0710
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0710
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0715
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0715
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0715
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0720
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0720
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0720
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0725
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0725
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0725
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0725
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0730
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0730
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0730
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0740
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0740
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0740
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0740
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0740
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0740
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0745
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0745
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0745
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0745
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0750
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0750
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0750
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0755
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0755
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0755
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0755
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0755
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0760
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0760
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0760
http://refhub.elsevier.com/S1389-0417(17)30098-0/h0760

	A computational cognitive framework of spatial memory in brains and robots
	Recommended Citation

	A computational cognitive framework of spatial memory in brains �and robots
	Introduction1
	Probabilistic models of space in brains and minds
	A computational framework for real-world capable models of spatial memory
	Probabilistic modelling
	Bayesian cue integration
	Bayesian localization
	Map error correction
	Bayesian nonparametrics for map structuring
	Dirichlet process Gaussian mixture models for clustering
	Metric learning in absolute pairwise difference space

	Integration with a cognitive architecture

	Limitations and missing mechanisms
	Computational shortcomings
	Psychological implausibilities
	Neural implausibilities

	Conclusion
	Acknowledgements
	References


