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Extended Sparse Distributed Memory 

Javier SNAIDER1, Stan FRANKLIN 
Computer Science Department & Institute for Intelligent Systems, The University of 

Memphis 

Abstract. Sparse distributed memory is an auto-associative memory system that 
stores high dimensional Boolean vectors. Here we present an extension of the 
original SDM that uses word vectors of larger size than address vectors. This 
extension preserves many of the desirable properties of the original SDM: auto-
associability, content addressability, distributed storage, robustness over noisy 
inputs. In addition, it adds new functionality, enabling an efficient auto-associative 
storage of sequences of vectors, as well as of other data structures such as trees. 

Keywords. Sparse Distributed Memory, Episodic Memory, Sequence 
Representation, Cognitive Modeling 

Introduction 

First proposed by Kanerva [1], sparse distributed memory (SDM) is based on large 
binary vectors, and has several desirable properties. It is distributed, auto associative, 
content addressable, and noise robust. Moreover, this memory exhibits interesting 
psychological characteristics as well (interference, knowing when it doesn’t know, the 
tip of the tongue effect), that make it an attractive option with which to model episodic 
memory [2][3]. SDM is still being implemented for various applications (e.g., 
[4][5][6]). Several improvements have been proposed for SDM; for example 
Ramamurthy and colleagues introduced forgetting as part of an unsupervised learning 
mechanism [7][8]. The same authors also proposed the use of ternary vectors, 
introducing a “don’t care” symbol as a third possible value for the dimensions of the 
vectors [9]. Kanerva, in his original work, described the use the SDM to store 
sequences. His procedure has the disadvantage of losing most of the auto-
associativeness and noise robustness of the memory. Later he proposed 
hyperdimentional arithmetic as a new mechanism for storing sequences and other data 
structures such as sets and records [10]. Even though this new mechanism is an 
improvement over the original SDM mechanism, it is still limited in its noise 
robustness, and it is very sensitive to interference (see below).  

Here we propose an extension to the original SDM that is especially suitable for 
storing sequences and other data structures such as trees. This extension can also 
improve the hyperdimensional arithmetic introduced by Kanerva. In the following 
section we briefly describe SDM. Then we introduce Extended SDM, discussing 
several uses of this extension and its results. Finally we propose some future directions. 
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1. Sparse Distributed Memory 

Here we present a brief introduction to SDM concepts. Both leisurely descriptions [11] 
and highly detailed descriptions [1] are available. Readers already familiar with SDM 
can skip this section. 

SDM implements a content addressable random access memory. Its address space 
is of the order of 21000 or even more. Both addresses and words are binary vectors 
whose length equals the number of dimensions of the space. In this example, we will 
think of bit vectors of 1000 dimensions. To calculate distances between two vectors in 
this space, the Hamming distance is used. Surprisingly, and of importance to SDM, the 
distances from a point of the space to any other point in the space are highly 
concentrated around half of the maximum distance. In our example, more than 
99.9999% of the vectors are at a distance between 422 and 578 from a given vector of 
the space [1]. 

To construct the memory, a sparse uniformly distributed sample of addresses, on 
the order of 220 of them, is chosen. These addresses are called hard locations. Only hard 
locations can store data. Several hard locations participate in the storing and retrieving 
of any single word of data. Each hard location has a fixed address, and contains one 
counter for each dimension. In our example, each hard location has 1000 counters. A 
counter is just an integer counter with a range of -40 to 40. Counters can be 
incremented or decremented in steps of size one.  

To write a word vector in a hard location, for each dimension, if the bit of this 
dimension in the word is 1, the corresponding counter is incremented. If it is 0, the 
counter is decremented. To read a word vector from a hard location, we compute a 
vector such that, for each dimension, if the corresponding counter in the hard location 
is positive, 1 is assigned to this dimension in the vector being read, otherwise 0 is 
assigned.  

When a vector is written in an address in the SDM, it is stored in several hard 
locations. In the same way, to read from an address in the SDM, the read vector is a 
composition of the readings of several hard locations. To determine which hard 
locations are used to read or write, the access sphere is defined. The access sphere for 
an address vector is a sphere with center at this address that on average encloses 0.1% 
of all the hard locations of the memory. The radius of the access sphere depends on the 
number of dimensions of the space. For example, for a SDM with 1000 dimensions, the 
radius of the access sphere is 451. In the example, the access sphere will contain any 
hard location whose address is less than 451 away from the address vector.  

To write a word vector in any address of the memory, the word is written to all 
hard locations inside the access sphere of the address. To read from any address, all 
hard locations in the access sphere of the address vector are read and a majority rule for 
each dimension is applied.  

In general, the SDM is used as an auto-associative memory, so the address vector 
is the same as the word vector. In this case, after writing a word in the memory, the 
vector can be retrieved using partial or noisy data. If the partial vector is inside a 
critical distance from the original one, and it is used as address with which to cue the 
memory, the read vector will be close to the original one. This critical distance depends 
on the number of vectors already stored in the memory. If the process is repeated, using 
the first recovered vector as address, the new reading will be even closer to the original. 
After a few iterations, typically less than ten, the readings converge to the original 
vector. If the partial or noisy vector is farther away than the critical distance, the 



successive readings from the iterations will diverge. If the partial vector is about at the 
critical distance form the original one, the iterations yields vectors that are typically at 
the same critical distance from the original vector. This behavior mimics the “tip of the 
tongue” effect. 

When storing sequences of vectors in this SDM, the address cannot be the same as 
the word, as it is in the auto-associative use. The vector that represents the first element 
of the sequence is used as address to read the memory. The read vector is the second 
element in the sequence. This second vector is used as address to read the memory 
again to retrieve the third element. This procedure is repeated until the whole sequence 
is retrieved. The problem with this way of storing sequences is that it is not possible to 
use iterations to retrieve elements of the sequence from noisy input cues. So, the 
memory is far less robust. 

Kanerva [10] introduced hyperdimensional computing, based on large binary 
vectors, as an appropriate tool for cognitive modeling, including holistic representation 
of sets, sequences and mappings. Among the various vector operations proposed, 
multiplication of binary vectors as bitwise xor, permutation, and sum with 
normalization are relevant to the present work, and will be discussed here.  

When two binary vectors are combined using bitwise xor, the result of this 
operation is a new vector of the same dimensionality as the original ones. This 
operation has several interesting properties. First, the resulting vector is dissimilar, i.e. 
farther than the critical distance, to the two original ones. Second, the xor operation is 
reversible. 

If A x B = C then C x B = A and C x A = B 

Third, this operation preserves Hamming distances.  
Permutation is an operation that shuffles the positions (dimensions) of one vector. 

Mathematically, this corresponds to multiplying the vector by a square matrix M with 
one 1 in each row and column while the other positions contain 0.  

Permutation (A) = (AM)T 

This operation is also reversible, multiplying by MT, and it preserves Hamming 
distances as well. 

Finally, the sum operation is the arithmetic (integer) sum of the values of each 
dimension of two or more vectors. For this operation the bipolar representation of the 
vectors, i.e., the value 0 is replaced by -1, is used. The resulting vector is an integer 
vector. To transform this vector into a binary vector, a normalization operation is 
required. If one dimension has a positive value, the normalized binary vector has a 1 in 
this dimension. If the value is negative, the normalized vector has a 0 in this dimension. 
Ties are resolved at random. The sum with normalization has interesting properties: the 
resulting vector is similar to each of the vectors summed up; i.e. the distance between 
them is less than the expected distance between any two vectors in the space. Also, xor 
multiplication distributes over the sum.  

Based in these properties, it is sometimes possible to retrieve the individual added 
vectors from the sum vector. This is feasible only if the number of vectors added is 
small, i.e. three or fewer vectors. Even with this small number, the interference among 
the vectors in the sum makes the retrieval of the original vectors from the sum not very 
reliable.  



Kaner
arithmetic
implemen
operation,
reconstruc
operation 

2. Extend

Here we 
distributed
vectors w
length tha
word has 
word vect
the first n 

 

 
The s

composed
a fixed ve
than n. To
for SDM, 
an addres
During ea
read in the

Form
W is the w
in the diag

It is 
comprises
hetero-ass
the rest o
improve, 
address to
initial vec
noise robu
number of
hard loca

rva describes
c [10]. We w
ntation in secti
, and so shar
cting the sequ
requires matr

ded SDM 

present a no
d memory (ES

with different l
an the address 

m dimension
tor (See Figur
bits of the wo

structure of th
d of hard locat
ector of length
o store a word
except that n
s in the mem

ach iteration, a
e next iteration

mally, the addre
word vector of
gonal.  
important to

s the useful da
sociative mem
of the word i
the desirable

o cue the mem
ctor is a noisy 
ustness charac
f hard location
tions are cor

s how to stor
will briefly d
ion 3. The ma
res the same 
uence. Also it
rices that are o

ovel structure,
SDM). The m
lengths for th
in which it is

ns with n<m.
e 1). Formally
ord compose t

Figure 1 A wor

his new mem
tions, each of 
h n. But each
d vector in th
ow the first n 

mory, again th
a word is rea
n.  
ess vector is A
f size m and M

o notice that 
ata. Conceptu

mories. The ad
is hetero-asso
e characteristi

mory, it is poss
version of the

cteristic of SD
ns in a distribu
rrupted or los

re sequences 
escribe this p

ain problem of
problems wi

t uses permut
outside of the b

, built upon 
main idea of th
he addresses a
s stored. Each
 Moreover, th
y, a word of le
the address.  

rd vector with its

mory system i
f which has an
h hard location
he memory, th

bits of the wo
he procedure 
d from the m

A = (WM)T, w
M is a n x m re

the whole w
ually, this mem
ddress part of 
ociative. This 
ics of the SD
sible to retriev
e stored one. T
DM. Second, 
uted way. So,
st. Third, the

of vectors u
procedure an
f this procedu
ith the sum m
tation, and as 
binary vector 

SDM, that w
is new memor
and the word
 address has n
he address ve
ength m and a

 address section.

is similar to t
n address and 
n has m coun
he procedure i
ord are used a
is similar to 

memory and its

where A is an 
ectangular dia

word vector, 
mory is a mix
the word is a
allows us to

DM. First, w
ve the correspo
This means th
the data of ea
 it is also robu
 previously d

using hyperdi
nd compare it
ure is that it us
mentioned ab
we discuss b
domain. 

we call extend
ry structure is

ds. A word ha
n dimensions 
ector is inclu
an address wit

 

the original S
counters. The

nters, where m
is the same as
as address. To
the one used 
s first n bits a

address vecto
agonal matrix 

including th
x of auto-assoc
auto-associativ
o preserve, an

with an initial
onding word, 
hat ESDM ma
ach vector is 
ust in the case
discussed psy

imensional 
t with our 
ses the sum 
bove while 
before, this 

ded sparse 
s the use of 
as a longer 
while each 

uded in the 
th length n, 

SDM. It is 
e address is 
m is greater 
s described 
o read from 

for SDM. 
are used to 

or of size n, 
with all 1s 

he address, 
ciative and 
ve whereas 
nd even to 
 vector as 
even if the 

aintains the 
stored in a 

e that some 
ychological 



characteri
the words
interfering
the flawed

3. Storing

Sequences
cognitive 
complex o

In se
storing se
disadvanta
robustness
ESDM is
implemen
2. The seq
vectors E1

word has 
are concat
is stored. A

 
 

 
To re

from the m
vector in 
Notice tha
address ca
explained 
sequences

ABC

In the
also. This

stics in SDM 
 in ESDM all
g with it. This
d sum operatio

g sequences a

s are importan
agents adapt 

ones forming s
ction 1 we m

equences in S
ages that we
s properties 
s straightforw

ntation uses ad
quence is com
1 and E2 are c
two sections o
tenated and st
A special vect

Figur

etrieve the seq
memory. This
the sequence

at in each rea
an have some 

previously. 
s that share a c

CDE and FGC

e example, the
s produces the

are also prese
lows storing o
s is a notable 
on to achieve 

and other dat

nt representati
and act over

sequences, or 
mentioned tw
DM. We also
aken the aut
of the memo
ward and el
ddresses of len

mposed of vect
concatenated f
of n bits each
tored in addres
tor can be use

re 2 Basic sequen

quence, the in
s word is divi
e. Repeating 
ading during 
noise, but the
One problem

common vecto

CHI 

e word CD is 
e undesirable

ent in ESDM. 
other data rela
improvement
the same goal

a structures

ions for cogni
r time. Simple
even trees, of

wo approaches
o mentioned t
to-associativel
ory. The imp
iminates thes
ngth n and w
tors of length 
forming a wo
. This word is
ss E2. The pro

ed to indicate t

nce representation

itial vector of
ided in two h
this procedur
the retrieval 

e iterating read
m with this 
or are stored in

stored in addr
e interference 

Finally, the h
ated with the a
t over the orig
l but with far l

itive agents. A
e events can 
f simpler even
s suggested b
that both app
ly, content a
plementation 
se disadvant
ords of length
n. To store th

ord of length 2
s stored in add
ocess continue
the end of the

n using 2n word v

f the sequence
halves. The se
re, the whole
of the seque

ding from the 
implementat

n the memory

ress C but the
between D a

hetero-associat
address data b
ginal SDM tha
less effectiven

Agents act ove
be combined 

nts [12][13]. 
by Kanerva [
proaches have
ddressability 
of sequence 
ages. The m
h 2n, as show
e sequence, th
2n. We will s
dress E1. Then
es until the ful
 sequence. 

 
vectors 

e is used to re
econd half is t
e sequence is
nce, the vect
memory clea

tion occurs
y. For example

e word CH is s
and H that pr

tive part of 
but without 
at relies on 
ness.  

er time and 
into more 

[1][10] for 
e important 

and noise 
storing in 

most basic 
wn in figure 
he first two 
ay that the 

n E2 and E3 
ll sequence 

ead a word 
the second 

s retrieved. 
tor used as 
ans it up, as 
when two 
e: 

stored in C 
revents the 



correct retrieval of one or even both of the sequences. One plausible solution is to use 
the same procedure proposed by Kanerva using hyperdimensional operations. The first 
reading from the memory again uses the initial vector of the sequence. But the 
following addresses are calculated using the previously read vectors of the sequence. 
An elegant combination is achieved using permutation and sum operations [10]. For 
example if P() denotes a random permutation, then: 

A3 = [P(E1)+E2] 

With this address we read the memory and from the read word the next vector of 
the sequence, i.e. E3, is retrieved. The following addresses are calculated in the same 
way.  

Ai+1 = [P(Ai)+Ei] 

An interesting option is to preserve the sum of the vectors in each reading and 
multiply it by a scalar k between 0 and 1, for example 0.8. This produces an effect of 
fading away of the old vectors of the sequence in the calculation of the next address. 

A’i+1 = k*P(A’i)+Ei 

Ai+1 = [A’i+1]       where A’ is the real vector with the sum before normalization. 

All these equations can be used in the original SDM, as pointed out by Kanerva. In 
both situations, operations with sums are used but the advantage of this implementation 
is that the retrieval of the succeeding vector in the sequence does not depend on 
operations that extract the vector from the sum. Here the sum is used only to compute 
the next address, but the vector is extracted directly from the second part of the read 
word. 

In a similar way, other data structures can be stored in ESDM. For example, to 
store binary trees, addresses of length n and words of length 3n are used. With the 
address of the root of the tree the first word is retrieved. The word is divided into three 
sections, left, center and right. The left section holds the content of the node in the tree; 
the center section is used as an address with which to read the left child node of the 
tree; the right section holds the address of the right child node. This procedure is 
repeated until the whole tree is retrieved. Notice that here again noisy vectors can be 
used, and ESDM takes care of cleaning them up. Also, a similar mechanism to the one 
described for sequences can be used to avoid problems related to repeated vectors in 
several structures. 

Other data structures can be easily derived from sequences and trees. A double 
linked sequence can be constructed adding another section of n bits to the word. The 
address of the previous element in the sequence is stored there. This allows navigating 
the sequence in reverse order. Something similar can be used to store the parent of a 
node in a tree. This allows navigating the tree from the bottom up. Finally, more 
sections of n bits can be added to each word in the tree so that trees with greater 
degrees can be stored. Interestingly, a tree can represent a more meaningful data 
structure, like a record, where each child node represents a field of the record, and the 
root the record itself. An even simpler representation for record is a word with several 
sections where each section represents a field of the record. 



4. Conclusions 

Here we have presented an extension of the original SDM that addresses several of its 
difficulties with storing compound data structures like sequences, trees and records. 
Our ESDM preserves the desirable, biologically inspired, properties of the original. It is 
also noise robust, auto-associative and distributed. These, combined with the possibility 
of storing sequences and other compound data structures, make ESDM an even more 
attractive option with which to model episodic memories. 

The current ESDM implementation uses a data base for the main storage of the 
hard locations, and a ram cache to speed up the store and retrieve operations. This 
allows us to create large ESDMs, with millions of hard locations and word dimensions 
of the order of 10,000 bits even with modest computers. Simulations of storing and 
retrieving sequences and trees, together with our evaluation of the advantages of 
ESDM over the standard SDM, are forthcoming.  

ESDM is compatible with other improvements already studied, such as the 
forgetting mechanism [7][8]. Including this forgetting mechanism is a natural following 
step for this architecture. 

ESDM has the potential for further extensions. Representation of other data 
structures and combining it with hyperdimensional vector arithmetic are possible paths 
for further development. 
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