University of Memphis

University of Memphis Digital Commons

CCRG Papers Cognitive Computing Research Group

2011

Extended Sparse Distributed Memory

J. Snaider

S. Franklin

Follow this and additional works at: https://digitalcommons.memphis.edu/ccrg_papers

Recommended Citation

Snaider, J., & Franklin, S. (2011). Extended Sparse Distributed Memory. Retrieved from
https://digitalcommons.memphis.edu/ccrg_papers/60

This Document is brought to you for free and open access by the Cognitive Computing Research Group at
University of Memphis Digital Commons. It has been accepted for inclusion in CCRG Papers by an authorized
administrator of University of Memphis Digital Commons. For more information, please contact
khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/ccrg_papers
https://digitalcommons.memphis.edu/ccrg
https://digitalcommons.memphis.edu/ccrg_papers?utm_source=digitalcommons.memphis.edu%2Fccrg_papers%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/ccrg_papers/60?utm_source=digitalcommons.memphis.edu%2Fccrg_papers%2F60&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

Extended Sparse Distributed Memory

Javier SNAIDER', Stan FRANKLIN
Computer Science Department & Institute for Intelligent Systems, The University of
Memphis

Abstract. Sparse distributed memory is an auto-associative memory system that
stores high dimensional Boolean vectors. Here we present an extension of the
original SDM that uses word vectors of larger size than address vectors. This
extension preserves many of the desirable properties of the original SDM: auto-
associability, content addressability, distributed storage, robustness over noisy
inputs. In addition, it adds new functionality, enabling an efficient auto-associative
storage of sequences of vectors, as well as of other data structures such as trees.

Keywords. Sparse Distributed Memory, Episodic Memory, Sequence
Representation, Cognitive Modeling

Introduction

First proposed by Kanerva [1], sparse distributed memory (SDM) is based on large
binary vectors, and has several desirable properties. It is distributed, auto associative,
content addressable, and noise robust. Moreover, this memory exhibits interesting
psychological characteristics as well (interference, knowing when it doesn’t know, the
tip of the tongue effect), that make it an attractive option with which to model episodic
memory [2][3]. SDM is still being implemented for various applications (e.g.,
[4][5][6]). Several improvements have been proposed for SDM; for example
Ramamurthy and colleagues introduced forgetting as part of an unsupervised learning
mechanism [7][8]. The same authors also proposed the use of ternary vectors,
introducing a “don’t care” symbol as a third possible value for the dimensions of the
vectors [9]. Kanerva, in his original work, described the use the SDM to store
sequences. His procedure has the disadvantage of losing most of the auto-
associativeness and noise robustness of the memory. Later he proposed
hyperdimentional arithmetic as a new mechanism for storing sequences and other data
structures such as sets and records [10]. Even though this new mechanism is an
improvement over the original SDM mechanism, it is still limited in its noise
robustness, and it is very sensitive to interference (see below).

Here we propose an extension to the original SDM that is especially suitable for
storing sequences and other data structures such as trees. This extension can also
improve the hyperdimensional arithmetic introduced by Kanerva. In the following
section we briefly describe SDM. Then we introduce Extended SDM, discussing
several uses of this extension and its results. Finally we propose some future directions.

! Corresponding Author: FedEx Institute of Technology #403h, 365 Innovation Dr., Memphis,
TN 38152; E-mail: jsnaider@memphis.edu

1. Sparse Distributed Memory

Here we present a brief introduction to SDM concepts. Both leisurely descriptions [11]
and highly detailed descriptions [1] are available. Readers already familiar with SDM
can skip this section.

SDM implements a content addressable random access memory. Its address space
is of the order of 2'° or even more. Both addresses and words are binary vectors
whose length equals the number of dimensions of the space. In this example, we will
think of bit vectors of 1000 dimensions. To calculate distances between two vectors in
this space, the Hamming distance is used. Surprisingly, and of importance to SDM, the
distances from a point of the space to any other point in the space are highly
concentrated around half of the maximum distance. In our example, more than
99.9999% of the vectors are at a distance between 422 and 578 from a given vector of
the space [1].

To construct the memory, a sparse uniformly distributed sample of addresses, on
the order of 2%° of them, is chosen. These addresses are called hard locations. Only hard
locations can store data. Several hard locations participate in the storing and retrieving
of any single word of data. Each hard location has a fixed address, and contains one
counter for each dimension. In our example, each hard location has 1000 counters. A
counter is just an integer counter with a range of -40 to 40. Counters can be
incremented or decremented in steps of size one.

To write a word vector in a hard location, for each dimension, if the bit of this
dimension in the word is 1, the corresponding counter is incremented. If it is 0, the
counter is decremented. To read a word vector from a hard location, we compute a
vector such that, for each dimension, if the corresponding counter in the hard location
is positive, 1 is assigned to this dimension in the vector being read, otherwise 0 is
assigned.

When a vector is written in an address in the SDM, it is stored in several hard
locations. In the same way, to read from an address in the SDM, the read vector is a
composition of the readings of several hard locations. To determine which hard
locations are used to read or write, the access sphere is defined. The access sphere for
an address vector is a sphere with center at this address that on average encloses 0.1%
of all the hard locations of the memory. The radius of the access sphere depends on the
number of dimensions of the space. For example, for a SDM with 1000 dimensions, the
radius of the access sphere is 451. In the example, the access sphere will contain any
hard location whose address is less than 451 away from the address vector.

To write a word vector in any address of the memory, the word is written to all
hard locations inside the access sphere of the address. To read from any address, all
hard locations in the access sphere of the address vector are read and a majority rule for
each dimension is applied.

In general, the SDM is used as an auto-associative memory, so the address vector
is the same as the word vector. In this case, after writing a word in the memory, the
vector can be retrieved using partial or noisy data. If the partial vector is inside a
critical distance from the original one, and it is used as address with which to cue the
memory, the read vector will be close to the original one. This critical distance depends
on the number of vectors already stored in the memory. If the process is repeated, using
the first recovered vector as address, the new reading will be even closer to the original.
After a few iterations, typically less than ten, the readings converge to the original
vector. If the partial or noisy vector is farther away than the critical distance, the

successive readings from the iterations will diverge. If the partial vector is about at the
critical distance form the original one, the iterations yields vectors that are typically at
the same critical distance from the original vector. This behavior mimics the “tip of the
tongue” effect.

When storing sequences of vectors in this SDM, the address cannot be the same as
the word, as it is in the auto-associative use. The vector that represents the first element
of the sequence is used as address to read the memory. The read vector is the second
element in the sequence. This second vector is used as address to read the memory
again to retrieve the third element. This procedure is repeated until the whole sequence
is retrieved. The problem with this way of storing sequences is that it is not possible to
use iterations to retrieve elements of the sequence from noisy input cues. So, the
memory is far less robust.

Kanerva [10] introduced hyperdimensional computing, based on large binary
vectors, as an appropriate tool for cognitive modeling, including holistic representation
of sets, sequences and mappings. Among the various vector operations proposed,
multiplication of binary vectors as bitwise xor, permutation, and sum with
normalization are relevant to the present work, and will be discussed here.

When two binary vectors are combined using bitwise xor, the result of this
operation is a new vector of the same dimensionality as the original ones. This
operation has several interesting properties. First, the resulting vector is dissimilar, i.e.
farther than the critical distance, to the two original ones. Second, the xor operation is
reversible.

IfAxB=CthenCxB=AandCxA=B

Third, this operation preserves Hamming distances.

Permutation is an operation that shuffles the positions (dimensions) of one vector.
Mathematically, this corresponds to multiplying the vector by a square matrix M with
one 1 in each row and column while the other positions contain 0.

Permutation (A) = (AM)"

This operation is also reversible, multiplying by M, and it preserves Hamming
distances as well.

Finally, the sum operation is the arithmetic (integer) sum of the values of each
dimension of two or more vectors. For this operation the bipolar representation of the
vectors, i.e., the value 0 is replaced by -1, is used. The resulting vector is an integer
vector. To transform this vector into a binary vector, a normalization operation is
required. If one dimension has a positive value, the normalized binary vector has a 1 in
this dimension. If the value is negative, the normalized vector has a 0 in this dimension.
Ties are resolved at random. The sum with normalization has interesting properties: the
resulting vector is similar to each of the vectors summed up; i.e. the distance between
them is less than the expected distance between any two vectors in the space. Also, xor
multiplication distributes over the sum.

Based in these properties, it is sometimes possible to retrieve the individual added
vectors from the sum vector. This is feasible only if the number of vectors added is
small, i.e. three or fewer vectors. Even with this small number, the interference among
the vectors in the sum makes the retrieval of the original vectors from the sum not very
reliable.

Kanerva describes how to store sequences of vectors using hyperdimensional
arithmetic [10]. We will briefly describe this procedure and compare it with our
implementation in section 3. The main problem of this procedure is that it uses the sum
operation, and so shares the same problems with the sum mentioned above while
reconstructing the sequence. Also it uses permutation, and as we discuss before, this
operation requires matrices that are outside of the binary vector domain.

2. Extended SDM

Here we present a novel structure, built upon SDM, that we call extended sparse
distributed memory (ESDM). The main idea of this new memory structure is the use of
vectors with different lengths for the addresses and the words. A word has a longer
length than the address in which it is stored. Each address has n dimensions while each
word has m dimensions with n<m. Moreover, the address vector is included in the
word vector (See Figure 1). Formally, a word of length m and an address with length n,
the first n bits of the word compose the address.

Address: n bits length

——
Word: m bits length

Figure 1 A word vector with its address section.

The structure of this new memory system is similar to the original SDM. It is
composed of hard locations, each of which has an address and counters. The address is
a fixed vector of length n. But each hard location has m counters, where m is greater
than n. To store a word vector in the memory, the procedure is the same as described
for SDM, except that now the first n bits of the word are used as address. To read from
an address in the memory, again the procedure is similar to the one used for SDM.
During each iteration, a word is read from the memory and its first n bits are used to
read in the next iteration.

Formally, the address vector is A = (WM)T, where A is an address vector of size n,
W is the word vector of size m and M is a n X m rectangular diagonal matrix with all 1s
in the diagonal.

It is important to notice that the whole word vector, including the address,
comprises the useful data. Conceptually, this memory is a mix of auto-associative and
hetero-associative memories. The address part of the word is auto-associative whereas
the rest of the word is hetero-associative. This allows us to preserve, and even to
improve, the desirable characteristics of the SDM. First, with an initial vector as
address to cue the memory, it is possible to retrieve the corresponding word, even if the
initial vector is a noisy version of the stored one. This means that ESDM maintains the
noise robustness characteristic of SDM. Second, the data of each vector is stored in a
number of hard locations in a distributed way. So, it is also robust in the case that some
hard locations are corrupted or lost. Third, the previously discussed psychological

characteristics in SDM are also present in ESDM. Finally, the hetero-associative part of
the words in ESDM allows storing other data related with the address data but without
interfering with it. This is a notable improvement over the original SDM that relies on
the flawed sum operation to achieve the same goal but with far less effectiveness.

3. Storing sequences and other data structures

Sequences are important representations for cognitive agents. Agents act over time and
cognitive agents adapt and act over time. Simple events can be combined into more
complex ones forming sequences, or even trees, of simpler events [12][13].

In section 1 we mentioned two approaches suggested by Kanerva [1][10] for
storing sequences in SDM. We also mentioned that both approaches have important
disadvantages that weaken the auto-associatively, content addressability and noise
robustness properties of the memory. The implementation of sequence storing in
ESDM is straightforward and eliminates these disadvantages. The most basic
implementation uses addresses of length n and words of length 2n, as shown in figure
2. The sequence is composed of vectors of length n. To store the sequence, the first two
vectors E; and E, are concatenated forming a word of length 2n. We will say that the
word has two sections of n bits each. This word is stored in address E;. Then E, and E;
are concatenated and stored in address E,. The process continues until the full sequence
is stored. A special vector can be used to indicate the end of the sequence.

_ n bits/l&ngth n bits/l\ength .
A B
/

. B8 | ¢ |
/

. ¢ | o |

Figure 2 Basic sequence representation using 2n word vectors

To retrieve the sequence, the initial vector of the sequence is used to read a word
from the memory. This word is divided in two halves. The second half is the second
vector in the sequence. Repeating this procedure, the whole sequence is retrieved.
Notice that in each reading during the retrieval of the sequence, the vector used as
address can have some noise, but the iterating reading from the memory cleans it up, as
explained previously. One problem with this implementation occurs when two
sequences that share a common vector are stored in the memory. For example:

ABCDE and FGCHI

In the example, the word CD is stored in address C but the word CH is stored in C
also. This produces the undesirable interference between D and H that prevents the

correct retrieval of one or even both of the sequences. One plausible solution is to use
the same procedure proposed by Kanerva using hyperdimensional operations. The first
reading from the memory again uses the initial vector of the sequence. But the
following addresses are calculated using the previously read vectors of the sequence.
An elegant combination is achieved using permutation and sum operations [10]. For
example if P() denotes a random permutation, then:

A; = [P(E)+E,]

With this address we read the memory and from the read word the next vector of
the sequence, i.e. Ej, is retrieved. The following addresses are calculated in the same
way.

Ai+ 1= [P(Al)+E|]

An interesting option is to preserve the sum of the vectors in each reading and
multiply it by a scalar k£ between 0 and 1, for example 0.8. This produces an effect of
fading away of the old vectors of the sequence in the calculation of the next address.

A,i+l = k*P(A’i)+Ei
A1 =[A%] where A’ is the real vector with the sum before normalization.

All these equations can be used in the original SDM, as pointed out by Kanerva. In
both situations, operations with sums are used but the advantage of this implementation
is that the retrieval of the succeeding vector in the sequence does not depend on
operations that extract the vector from the sum. Here the sum is used only to compute
the next address, but the vector is extracted directly from the second part of the read
word.

In a similar way, other data structures can be stored in ESDM. For example, to
store binary trees, addresses of length n and words of length 3n are used. With the
address of the root of the tree the first word is retrieved. The word is divided into three
sections, left, center and right. The left section holds the content of the node in the tree;
the center section is used as an address with which to read the left child node of the
tree; the right section holds the address of the right child node. This procedure is
repeated until the whole tree is retrieved. Notice that here again noisy vectors can be
used, and ESDM takes care of cleaning them up. Also, a similar mechanism to the one
described for sequences can be used to avoid problems related to repeated vectors in
several structures.

Other data structures can be easily derived from sequences and trees. A double
linked sequence can be constructed adding another section of n bits to the word. The
address of the previous element in the sequence is stored there. This allows navigating
the sequence in reverse order. Something similar can be used to store the parent of a
node in a tree. This allows navigating the tree from the bottom up. Finally, more
sections of n bits can be added to each word in the tree so that trees with greater
degrees can be stored. Interestingly, a tree can represent a more meaningful data
structure, like a record, where each child node represents a field of the record, and the
root the record itself. An even simpler representation for record is a word with several
sections where each section represents a field of the record.

4. Conclusions

Here we have presented an extension of the original SDM that addresses several of its
difficulties with storing compound data structures like sequences, trees and records.
Our ESDM preserves the desirable, biologically inspired, properties of the original. It is
also noise robust, auto-associative and distributed. These, combined with the possibility
of storing sequences and other compound data structures, make ESDM an even more
attractive option with which to model episodic memories.

The current ESDM implementation uses a data base for the main storage of the
hard locations, and a ram cache to speed up the store and retrieve operations. This
allows us to create large ESDMs, with millions of hard locations and word dimensions
of the order of 10,000 bits even with modest computers. Simulations of storing and
retrieving sequences and trees, together with our evaluation of the advantages of
ESDM over the standard SDM, are forthcoming.

ESDM is compatible with other improvements already studied, such as the
forgetting mechanism [7][8]. Including this forgetting mechanism is a natural following
step for this architecture.

ESDM has the potential for further extensions. Representation of other data
structures and combining it with hyperdimensional vector arithmetic are possible paths
for further development.

References

[1] Kanerva, P. (1988). Sparse Distributed Memory. Cambridge MA: The MIT Press.

[2] Baddeley, A., Conway, M., & Aggleton, J. (2001). Episodic Memory. Oxford: Oxford University Press.

[3] Franklin, S., Baars, B. J., Ramamurthy, U., & Ventura, M. (2005). The Role of Consciousness in
Memory. Brains, Minds and Media, 1, (pp.1 - 38).

[4] Furber, S. B., Bainbridge, W.J., Cumpstey J.M. & Temple, S. (2004). A Sparse Distributed Memory
based upon N-of-M Codes, Neural Networks Vol: 17/10 (pp 1437 - 1451).

[S] Bose, J., S.B. Furber, J.L. Shapiro, A.(2005). Spiking neural sparse distributed memory implementation
for learning and predicting temporal sequences. Lecture Notes in Computer Science, Volume 3696,
(pp.115 - 120), Springer-Verlag GmbH. ISSN: 0302-9743

[6] Meng, H., Appiah, K., Hunter, A., Yue, S., Hobden, M., Priestley, N., Hobden, P. & Pettit, C. (2009). A
modified sparse distributed memory model for extracting clean patterns from noisy inputs. In:
(Proceedings) International Joint Conference on Neural Networks (IJCNN). (pp. 2084 - 2089).

[71 Ramamurthy, U., D'Mello, S. K., & Franklin, S. (2006). Realizing Forgetting in a Modified Sparse
Distributed Memory System. Proceedings of the 28th Annual Conference of the Cognitive Science
Society, (pp. 1992 - 1997).

[8] Ramamurthy, U. & Franklin, S. (2011). Memory Systems for Cognitive Agents. Proceedings of Human
Memory for Artificial Agents Symposium at the Artificial Intelligence and Simulation of Behavior
Convention (AISB'l 1), University of York, UK,, (pp. 35 - 40).

[91 D'Mello, S. K., Ramamurthy, U., & Franklin, S. (2005). Encoding and Retrieval Efficiency of Episodic
Data in a Modified Sparse Distributed Memory System Proceedings of the 27th Annual Meeting of the
Cognitive Science Society. Stresa, Italy.

[10] Kanerva, P. (2009). Hyperdimensional Computing: An Introduction to computing in distributed
representation with high-dimensional random vectors. Cognitive Computation, 1(2), (pp. 139 — 159).

[11] Franklin, S. (1995). Artificial Minds. Cambridge MA: MIT Press.

[12] Snaider, J., McCall, R., & Franklin, S. (in press). Time Production and Representation in a Conceptual
and Computational Cognitive Model. Cognitive Systems Research.

[13] Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in
Cognitive Science, 12(2), (pp. 72 —79).

	Extended Sparse Distributed Memory
	Recommended Citation

	Microsoft Word - Extended SDM.docx

