2022

BIOM 4906: Tissue Engineering (Syllabus)

Gary L. Bowlin
University of Memphis

Follow this and additional works at: https://digitalcommons.memphis.edu/biomedical-engineering-syllabi

Recommended Citation

This Syllabus is brought to you for free and open access by the Biomedical Engineering at University of Memphis Digital Commons. It has been accepted for inclusion in Biomedical Engineering Syllabi by an authorized administrator of University of Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.
UM BIOM 4906
Tissue Engineering
Spring 2022

Instructors: Gary L. Bowlin, Ph.D.
Office Hours: T & Th 9-10 AM, Room ET119D
Phone: 678-2670
Email: glbowlin@memphis.edu

Class: 3 credit hours
Meeting: Mon. & Wed. 12:40 pm – 2:05 pm
Class Location: ET 233

Catalog description: To study the design, development, and implantation of tissue engineered components. Analysis of the basis for cell growth and differentiation, control of tissue development (in vivo & in vitro), models for tissue engineering, and transplantation of engineered cells and tissues. The emphasis of these analyses will be focused on the cardiovascular system (blood vessels and cardiac prostheses), muscoskeletal system (Bone, cartilage, and tendons), and skin.

Prerequisites: BIOM 4730, BIOM 3110 or BIOL 3730 or permission by instructor.

Class meeting: Solely in person course due to discussion nature of lecture, very few PowerPoint presentations.

Textbook:

Supplemental Materials: Various Book Chapters and Journal Articles (Class handouts)

Course Objectives:
After completion of the course, students should be able to:

- Describe the basic principles involved in Tissue Engineering products.
- Detail their approach to Tissue Engineering a tissue or organ of their selecting.
- Detail historical approaches to Tissue Engineering products.
- Understand the factors related to biomaterials, template architecture, polymer processing, cell/developmental biology, and the role of bioreactors in Tissue Engineered products.
- Finally, be able apply tissue engineering principles to the solution of clinical problems requiring tissue regeneration of tissue buy use of tissue-engineered products.
Possible Topics Covered:

- Anatomy and Physiology review
- Basis of cell growth and differentiation
- In vitro control of tissue development
- In vivo synthesis of tissues and organs
- Models for tissue engineering
- Biomaterials in tissue engineering (polymers used)
- Polymer processing for tissue templates/scaffolds
- Transplantation of engineered cells and tissues
- Cardiovascular tissue engineering (blood vessel and cardiac muscle)
- Musculoskeletal system (bone, cartilage, and tendon)
- Skin tissue engineering

Grading:
Final course grades will be determined as follows:

- Attendance/Quizzes 10%
- Homework/Projects 20%
- First Exam 20%
- Second Exam 25%
- Last Exam 25%
- TOTAL 100%

Last exam will be the last day of class as well as the last design report due.

All occurrences of academic misconduct will be dealt with in accordance with guidelines and procedures outlined in the Academic Misconduct Policy, which may be accessed on the University website.

Syllabus Changes
The instructor reserves the right to make changes as necessary to this syllabus. If changes are necessitated during the term of the course, the instructor will immediately notify students of such changes both by individual email communication and posting both notification and nature of change(s) on the course home page news items.

COVID-19 Health and Safety Policy - Masks and Social Distancing

Do not come to campus if you are experiencing symptoms, are in isolation or quarantine due to positive test results or exposure, pending test results, or have reason to believe you have come in contact with the virus.

Daily symptom monitoring and self-reporting of positive test results are required.

Student Health
Students who are experiencing symptoms such as sneezing, coughing or a higher than normal temperature should inform instructors by email so they can be excused from class and should
stay home. Students should contact their health care provider or the Student Health Center at https://www.memphis.edu/health/. Students who have a positive COVID-19 test should contact the Dean of Students at deanofstudents@memphis.edu.

Student Resources

Students who need additional resources can contact the Dean of Students Office at https://www.memphis.edu/deanofstudents/crisis/index.php.

Project: Assigned teams (see below) will work on the tissue/organ of choice to explore in detail a tissue engineering solution for a clinical problem/disease. The project will be divided into multiple parts;

1. Tissue/organ physiology – what are you trying to replace in form and function.
2. Cellular components of tissue/organ
3. ECM and tissue/organ basic subunit
4. Stem cells in the tissue/organ or used in tissue engineering the product
5. Template designs used for particular tissue/organ
6. Tissue engineering attempts (historical perspective)
7. Bioreactors designed for this application
8. Your design approach to creating this tissue/organ (Final design project)

<table>
<thead>
<tr>
<th>Colored (H)</th>
<th>Skeletal Muscle</th>
<th>Breast Tissue</th>
<th>Cornea</th>
<th>Ear Cartilage (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dustie Flowers</td>
<td>Arman Dela Cruz</td>
<td>Elizabeth Scheiderer</td>
<td>Umiko Jones</td>
<td>Dalton Reed</td>
</tr>
<tr>
<td>Alden Jackson Pierce</td>
<td>Tommy Doan</td>
<td>Emma Summerhill</td>
<td>Harrison Nguyen</td>
<td>Georgia Hill</td>
</tr>
<tr>
<td>Niresha Wanigasekara</td>
<td>Michael Doan</td>
<td>Olivia Tutor</td>
<td>Onafowokan Toluwanimi</td>
<td>Shelby Allen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cardiac Muscle (H)				

Lauren Carter				
Andrea Esparza				

Allen, Shelby L. new add to class