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Abstract 
Intelligent software agents (agents) adhering to the action 
selection paradigm have only one primary task that they 
need accomplish at any given time: to choose their next 
action. Consequently, modeling the current situation 
effectively is a critical task for any agent.  With an accurate 
model of the current situation, actions can be better selected.  
We propose an event-based representational framework 
designed to provide grounded perceptual representations of 
events for agents.  We describe how they are produced and 
detail their role in a comprehensive cognitive architecture 
designed to explain, integrate, and model human cognition. 
Event-based representations draw inspiration from research 
on thematic roles, and integrate research on event 
perception. Events are represented as parameterized actions, 
that is, nodes with thematic role links that can bind to 
Agent, Object, and other node types.  

Introduction 
Agents adhering to the action selection paradigm, 
(Franklin, 1995) have only one primary task they need to 
accomplish at any given time; that is, selecting their next 
action.  In order to choose actions well, it is critical for the 
agent to effectively represent its current situation.  In this 
paper we present basic, primitive representations for agents 
to represent their current situation with.  We also detail the 
processes necessary to produce these representations and 
the role they play in a comprehensive cognitive 
architecture using the LIDA model as an example 
(Franklin & Patterson 2006, Franklin et al. 2007).   
    The LIDA model is a comprehensive, conceptual and 
computational architecture designed to explain, integrate, 
and model a large portion of human cognition. Based 
primarily on Global Workspace Theory (Baars 1988), the 
model implements and fleshes out a number of 
psychological and neuropsychological theories including 
situated cognition (Varela et al. 1991), perceptual symbol 
systems (Barsalou 1999, 2008), working memory 
(Baddeley and Hitch 1974), memory by affordances 

(Glenberg 1997), long-term working memory (Ericsson 
and Kintsch 1995), Sloman’s H-CogAff  architecture 
(1999), and transient episodic memory (Conway 2001).  
    The LIDA computational architecture, derived from the 
LIDA cognitive model, employs several modules that are 
designed using computational mechanisms drawn from the 
“new AI.” These include variants of the Copycat 
Architecture (Hofstadter and Mitchell 1995, Marshall 
2002), Sparse Distributed Memory (Kanerva 1988, Rao 
and Fuentes 1998), the Schema Mechanism (Drescher 
1991, Chaput et al. 2003), the Behavior Net (Maes 1989, 
Tyrrell 1994), and the Subsumption Architecture (Brooks 
1991).  An initial version of a software framework for 
LIDA-based agents has recently been completed. The 
LIDA model and its ensuing architecture are grounded in 
the LIDA cognitive cycle.  
    Every autonomous agent (Franklin and Graesser 1997), 
be it human, animal, or artificial, must frequently sample 
(sense) its environment and select an appropriate response 
(action). More sophisticated agents, such as humans, 
process (make sense of) the input from such sampling in 
order to facilitate their action selection. The agent’s “life” 
can be viewed as consisting of a continual sequence of 
these cognitive cycles, as they are called in the LIDA 
model. Each cycle is composed of phases of sensing, 
attending and acting. A cognitive cycle can be thought of 
as a moment of cognition - a cognitive “moment.” Higher-
level cognitive processes are composed of many of these 
cognitive cycles, each a cognitive “atom.”   
    Just as atoms are composed of protons, neutrons and 
electrons, and some of these are composed of quarks, 
gluons, etc., these cognitive “atoms” have a rich inner 
structure. What the LIDA model hypothesizes as the rich 
inner structure of the LIDA cognitive cycle will be 
described briefly. More detailed descriptions are available 
elsewhere (Baars & Franklin 2003, Franklin et al. 2007).   
    During each cognitive cycle the LIDA agent first makes 
sense of its current situation as best as it can by updating 
its representation of its world, both external and internal.



 
 

Figure 1. The LIDA Cognitive Cycle 
 
By a competitive process, as specified by Global 
Workspace Theory, it then decides what portion of the 
represented situation is most in need of attention. 
Broadcasting this portion, the current contents of 
consciousness, helps the agent to finally choose an 
appropriate action and execute it. Thus, the LIDA 
cognitive cycle can be subdivided into three phases, the 
understanding phase, the attention phase, and the action 
selection phase. Figure 1 should help the reader follow the 
description. It proceeds clockwise from the upper left . 
    Beginning the understanding phase, incoming stimuli 
activate low-level feature detectors in Sensory Memory. 
This preprocessed output is sent to Perceptual Associative 
Memory where higher-level feature detectors feed in to 
more abstract entities such as objects, categories, actions, 
events, feelings, etc. The resulting percept is sent to the 
Workspace where it cues both Transient Episodic Memory 
and Declarative Memory producing local associations. 
These local associations are combined with the percept to 
generate a current situational model, the agent’s 
understanding of what’s going on right now.   
    Attention Codelets1 begin the attention phase by forming 
                                                
1  The term codelet refers generally to any small, special purpose 
processor or running piece of computer code. 

coalitions of selected portions of the current situational 
model and moving them to the Global Workspace. A 
competition in the Global Workspace then selects the most 
salient, the most relevant, the most important, the most 
urgent coalition, whose contents become the content of 
consciousness that are broadcast globally.   
    The action selection phase of LIDA’s cognitive cycle is 
also a learning phase in which several processes operate in 
parallel. New entities and associations, and the 
reinforcement of old ones, occur as the conscious 
broadcast reaches Perceptual Associative Memory. Events 
from the conscious broadcast are encoded as new 
memories in Transient Episodic Memory. Possible action 
schemes, together with their contexts and expected results, 
are learned into Procedural Memory from the conscious 
broadcast. Older schemes are reinforced. In parallel with 
all this learning, and using the conscious contents, possible 
action schemes are recruited from Procedural Memory. A 
copy of each such scheme is instantiated with its variables 
bound, and sent to Action Selection, where it competes to 
be the behavior selected for this cognitive cycle. The 
selected behavior triggers Sensory-Motor Memory to 
produce a suitable algorithm for the execution of the 
behavior. Its execution completes the cognitive cycle. 
While its developers hesitate to claim that LIDA is more 



general or more powerful than other comprehensive 
cognitive architectures such as SOAR (Laird, et al., 1987), 
ACT-R (Anderson, 1990), Clarion (Sun, 2007), etc., they 
do believe that LIDA will prove to be a more detailed and 
faithful model of human cognition, including several forms 
of learning, that incorporates the processes and 
mechanisms required for sophisticated decision making. 
 LIDA has a number of features that separate it from 
other cognitive architectures.  There is an explicit attention 
mechanism (functional consciousness) to focus on a salient 
portion of its current situation.  Feelings and emotions are 
used for motivation and to bias learning.  LIDA 
incorporates the “cognitive cycle” hypothesis – that the 
action-perception cycle (Neisser, 1976; Freeman, 2002) 
can be thought of as a cognitive atom, and that all higher-
level cognitive processes are composed of multiple 
cognitive cycles implemented using behavior streams.  
LIDA’s Workspace provides a detailed inner structure for 
preconscious working memory.  It includes a model of the 
agent’s current situation (Current Situational Model).  The 
Current Situational Model contains a perceptual scene with 
windows for both real and virtual (imaginary) conceptual 
representation (McCall, Snaider, Franklin, 2010).  The 
Current Situational Model also contains complex structures 
for an even higher-level, “global” representation.  The 
Workspace also contains an ordered queue of the recent 
contents of consciousness (Conscious Contents Queue) and 
an episodic buffer of recent local associations (Franklin et 
al., 2005). 
A quick glance at the LIDA model, particularly its 
cognitive cycle diagram (Figure 1), makes the model 
appear modular. This interpretation is misleading. Within a 
single cycle, individual modules such as Perceptual 
Associative Memory and Action Selection are internally 
quite interactive. Structure-building codelets operate 
interactively on the Workspace. The cognitive cycle as a 
whole operates quite interactively, in that internal 
procedures happen asynchronously.  For example, nodes 
and links in Perceptual Associative Memory instantiate 
grounded copies of themselves in the Workspace whenever 
they become sufficiently activated, without waiting for a 
single percept to be moved. Thus, the cognitive cycle is 
more interactive than would be expected by a system based 
on information passing between modules. The only straight 
information passing in the entire cycle is the conscious 
broadcast of a single coalition’s contents and the selection 
of the single action to be performed. All other processes 
within a cycle are interactive. All higher-level, multi-cyclic 
processes in LIDA are quite interactive, since their 
cognitive cycles, occurring at a rate of five to ten per 
second, continually interact with one another. Though 
LIDA superficially appears modular, it is, in its operation, 
much more aligned with the interactive approach. 

Background 
Earlier versions of LIDA’s representations consisted of 
only nodes and links (Franklin 2005).  However, their use 

is impractical to represent the kind of processed 
information produced by complex perception.  For 
example, representing a detailed visual image with nodes 
and links does not appear to be the most effective 
representation from which to make geometric inferences.       
 In many important Cognitive Architectures (e.g. SOAR, 
ACT-R, Clarion), symbolic representations are used 
(Langley 2009).  While symbolic-like representations are, 
in our view (Franklin, 1995) necessary for cognition, they 
must be grounded in external reality. A major shortcoming 
of early artificial intelligence was its ignoring of the 
perceptual processes necessary for real-world cognition.  
Granted, understanding perception and implementing it 
computationally is a challenging task.  This criticism of 
symbolic representations extends to users of pre-processed 
domains, e.g. virtual worlds or simulations in which agents 
can perceive object “for free”.  In the “real” world, agents 
must construct meaning from their environment. While 
such simulations are useful, it is imperative that agents 
developed for such simulations do not rely on preprocessed 
stimuli.  The danger here is that the agent’s performance 
will not scale to more complex or “real-world” problems. 
 One important kind of perceptual representation is what 
we have termed event-based representations.  In this 
scheme events are represented as parameterized actions 
(Allbeck and Badler, 2003).  We essentially take our 
definition of events from Zacks & Tversky (2001): an 
event is the contents of a segment of time at a given 
location, and that segment is perceived to have a beginning 
and an end.  We are primarily interested in events lasting 
on the order of a few seconds, such as throwing a ball. 
 Next we describe primitive feature detectors, Perceptual 
Associative Memory nodes, and their role in producing 
perceptual representations that are ultimately grounded in 
the sensory stimulus. These representations retain their 
sensory modality groundings as they are used in cognitive 
processing.  This ensures that our representations are 
modal and grounded (Barsalou 1999, 2008) and follow an 
embodied approach to cognition (Barsalou 1999, 2008; de 
Vega, Glenberg and Graesser, 2008; Varela et. al., 1991).  
Then we propose classes of representational nodes thought 
to be most primitive (fundamental).   We focus in detail on 
a particular class, action nodes, that, with their thematic 
role links, are used to produce event representations. Next 
we propose primitive link classes analogous to the 
primitive node classes.  Finally, we identify future 
directions for our research in this area. 

Sensory Memory and Perceptual Associative 
Memory Components 

Primitive feature detectors 
In LIDA, all feature detectors are a part of Perceptual 
Associative Memory (PAM).  Each feature detector 
consists of a PAM node and an algorithm to compute the 
current activation of the node. Each also has a receptive 
field comprised of lower level feature detectors or some 



subset of the agent’s sensory memory. The activation 
depends on the activity of the entities in its receptive field, 
for example, a center-surround cell in human vision.  
Unless a primitive feature detector (PFD) is detecting a 
trivial pattern in the sensory stimulus there must be some 
processing or algorithm to compute the PFD node's 
activation depending on the activity within its receptive 
field.  Regardless of mechanism used for detection, the end 
result of the feature detection process is the sending of 
activation to a PAM node or nodes.  Such a processing step 
effectively translates raw sensory input into a higher-level 
node representation.  It is here that the first “map” is being 
“drawn” of the current environmental “territory”. 

Nodes 
Each node in PAM has base-level, a current, and a total 
activation.  Base-level activation measures the long-term 
importance or usefulness of the node, and can be modified 
as part of perceptual learning.  The current activation of a 
node is a measure of that node's relevance in the current 
situation.  Current activation for a non-primitive feature 
detector node A is some function of the activation of other 
nodes with links that enter into A. Links have weights, 
which may factor into this computation of current 
activation.  Current activation decays quickly for the nodes 
near PFD nodes and more slowly for nodes farther away 
from (and more abstract than) PFD nodes. Total activation 
is simply the sum of base-level and current activations.   
     In LIDA, when a PAM node goes over its threshold, it 
is said to be instantiated.  Instantiation involves creating a 
copy of the original node and binding its variables.    
Instantiated PAM nodes ought to maintain connection to 
the lower level sensory representations that have activated 
them.  If this is not done, them the node becomes an 
ungrounded symbol. Since every PAM node ultimately 
gets its activation from PFDs, all perceptual 
representations in LIDA are sufficiently grounded in 
LIDA's sensory machinery. 
 
Proposed primitive node classes. Nodes and links from 
LIDA’s Perceptual Associative Memory are a major kind 
of representation for the LIDA architecture. In particular, 
they play a central role in the building of structures in the 
preconscious Workspace.  They should be thought of in 
terms of Barsalou’s (1999) perceptual symbols. There is 
further discussion of additional kinds of representation 
thought to be critical to the success of a generally 
intelligent system (Wang, Goertzel, and Franklin, 2008).  
Major node classes thought to be primitive include action 
nodes that represent actions, feature nodes representing 
perceptual features such as red, and class nodes 
representing categories. Instance and feature nodes are 
linked to class nodes providing activation. Instance 
(object) nodes represent instances of a class. Attachment of 
instance nodes to class nodes is via links that represent 
membership.  Finally, feeling nodes, implement values.  
 
 

 

 
Figure 2. The action node Put has Agent, Object,  

and Location role links. 
 
Action nodes (Figure 2) are central to event representation. 
Every action nodes has thematic role links, first introduced 
by Fillmore (1968).  We make no claim that any particular 
classification of thematic roles is the best; rather we use 
Fillmore’s as an example. The binding of thematic role 
links of action nodes to role filler nodes takes place in the 
preconscious Workspace, possibly requiring multiple 
cycles. If the event had been learned into PAM, i.e., if an 
action with specific role-fillers had been learned as a single 
unit, then the event could be recognized directly in one 
cognitive cycle. We take an action node together with 
bound role nodes to constitute the representation of an 
event (Figure 3). In spoken language there are different 
senses of the same action e.g. strike, as in “to cause harm” 
or “to impact”.  For these cases there must be a unique 
node for each sense of the action.  Also note that there are 
endless combinations of role-fillers that could be bound to 
a given action depending on the environmental situation. 
By adding a representation for events to the LIDA model, 
events can come to attention (consciousness), be learned 
into LIDA’s various memories and, once learned, be 
recognized directly in a single cognitive cycle.  We extend 
the notion of action to include states of being.  Thus the 
node for “exists” is considered to be an action node with 
roles links just like other action nodes.  The exists node 
would be used in combination with an object to represent 
the presence of this object in the current situation.  
Structure-building codelets, which are daemon-like 
processes, match active nodes in the Workspace to 
unfulfilled roles. 
  Instance nodes represent instances of a class.  They are 
attached to the class node via links that represent member-
ship.  Instances of a class are features in the sense that they 
have a role in defining the class.  Non-instance nodes that 
are attached to the class node by links are called feature 
nodes.  The activation of a feature node contributes to the 
activation of the class node(s) to which that feature node is 
linked.  The instance nodes plus the feature nodes that are 
connected to a class node are what define the class. 
 
Proposed primitive link classes. Each link has a source 
node and a sink node. There are separate links for passing 
activation in each direction.  



 

Figure 3. The event representation for the event “Jake put 
the coffee mug on the table” 

 
Each link class includes its own weighting scheme for 
passing activation between the source node and sink node.  
Nodes and links may be added via perceptual learning.  
Links are meant to represent relationships between nodes.  
So the classes of links thought to be primitive include: is-
a-feature-of, is-a-part-of, spatial, causal, thematic role, 
membership, and kind-of.  By adding these link classes we 
distinguish between different kinds of relationships that 
occur in representation: thematic roles in events, spatial 
relationships for geometry, relationships of membership, 
etc.  Two other primitive link classes have functional 
significance: feeling links associate nodes with feeling 
nodes, while lateral-inhibitory links allow one node to 
inhibit another.  Causal links concern events on the order 
of 10 to 100 ms apart in time.  Kind-of links represents a 
subset relationship e.g. polar bear –kind-of-> bear. 
   Spatial relationships are represented at a higher 
conceptual level by spatial links.  At a low level, spatial 
relations may be represented by a geometric map of objects 
similar to how a political map reflects the actual shape and 
position of countries.  A conceptual representation of a 
spatial relationship, e.g. left-of, represents all possible such 
relations.  Thus a left-of link may be activated whenever 
such a relationship occurs.   Depending on the 
circumstances, the relationship may be represented by one 
unidirectional spatial link between two objects or, 
alternatively, by two unidirectional links connecting the 
objects in both ways.  Unidirectional links provide 
additional information about the relationship of the two 
nodes they connect. For example the direction of the link 
in bob –left-of-> bill says that bob is on the left and bill is 
on the right.  Other examples of spatial links include right-
of, in-front-of, in-back-of, above, below, and touching. 
   Common thematic roles thought to be primitive for 
representation in LIDA are Agent, Attribute, Beneficiary, 
Source, Destination, Location, Experiencer, and 
Instrument (Verbnet, 2009, Sowa, 1991).  In LIDA, the 
‘object’ role link is considered to be equivalent to an 
affordance link, that is, a link that represents an affordance 
of an object (Gibson, 1979).  

 
Implementation and Testing. A software framework for 
LIDA-based agents has recently been developed.  We plan 
to use it to replicate data from existing psychological 
experiments (e.g. reaction time, backward masking, etc.) 
Such data will be used to test and tune internal parameters 
of the model. 
We plan to test performance by replicating previous 
experiments in event segmentation, for example, 
segmenting the movement of a ball into events (Zacks 
2004). 

Conclusion 
We have described how grounded perceptual 
representations can be produced within a comprehensive 
cognitive architecture.  A number of primitive node and 
link classes were proposed as fundamental representational 
building blocks.  A particular class of nodes, action nodes, 
feature members with thematic role links.  Action nodes 
with bound role links comprise the representation of an 
event.   A major direction for future research involves 
addressing issues arising from event representation where 
multiple events at possibly different time scales are present 
in the agent's model of the current situation. 
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