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A Conceptual and Computational Model of Moral 
Decision Making in Human and Artificial Agents 

 
By Wendell Wallach, Stan Franklin, and Colin Allen 

 
 
Abstract : Recently there has been a resurgence of interest in general, 
comprehensive models of human cognition.  Such models aim to explain higher 
order cognitive faculties, such as deliberation and planning.  Given a 
computational representation, the validity of these models can be tested in 
computer simulations such as software agents or embodied robots.  The push to 
implement computational models of this kind has created the field of Artificial 
General Intelligence, or AGI.  
 
Moral decision making is arguably one of the most challenging tasks for 
computational approaches to higher order cognition.  The need for increasingly 
autonomous artificial agents to factor moral considerations into their choices and 
actions has given rise to another new field of inquiry variously known as Machine 
Morality, Machine Ethics, Roboethics or Friendly AI. In this paper we discuss how 
LIDA, an AGI model of human cognition, can be adapted to model both affective 
and rational features of moral decision making. Using the LIDA model we will 
demonstrate how moral decisions can be made in many domains using the same 
mechanisms that enable general decision making.  
 
Comprehensive models of human cognition typically aim for compatibility with 
recent research in the cognitive and neural sciences.  Global Workspace Theory 
(GWT), proposed by the neuropsychologist Bernard Baars (1988), is a highly 
regarded model of human cognition that is currently being computationally 
instantiated in several software implementations.  LIDA (Franklin et al. 2005) is 
one such computational implementation. LIDA is both a set of computational 
tools and an underlying model of human cognition, which provides mechanisms 
that are capable of explaining how an agent's selection of its next action arises 
from bottom-up collection of sensory data and top-down processes for making 
sense of its current situation. We will describe how the LIDA model helps 
integrate emotions into the human decision making process, and elucidate a 
process whereby an agent can work through an ethical problem to reach a 
solution that takes account of ethically relevant factors.   
 
Keywords: moral decision making, artificial general intelligence, artificial 
intelligence, Global Workspace Theory, machine morality, machine ethics 
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Introduction  
 

AGI and Moral Machines 
 
 
Human-level intelligence entails the capacity to handle a broad array of 
challenges including logical reasoning, understanding the semantic content of 
language, learning, navigating around the obstacles in a room, discerning the 
intent of other agents, and planning and decision making in situations where 
information is incomplete.  The prospect of building "thinking machines" with the 
general intelligence to tackle such an array of tasks inspired the early founders of 
the field of Artificial Intelligence. However, they soon discovered that tasks such 
as reasoning about physical objects or processing natural language, where they 
expected to make rapid progress, posed daunting technological problems. Thus 
the developers of AI systems have been forced to focus on the design of systems 
with the ability to intelligently manage specific tasks within relatively narrow 
domains, such as playing chess or buying and selling currencies on international 
markets. Despite the fact that many tasks such as visual processing, speech 
processing, and semantic understanding present thresholds that have yet to be 
crossed by technology, there has been in recent years a transition back to the 
development of systems with more general intelligence.  Such systems are 
broadly referred to as having artificial general intelligence (AGI) (Wang et al. 
2008, Goertzel and Franklin 2008). 
 
The possibility of building AI systems with moral decision making faculties has 
stepped beyond the stories of science fiction writers such as Isaac Asimov and is 
being seriously considered by philosophers and engineers, (Gips 1991, Clark 
1994, Allen et al. 2000).  A new field of enquiry called Machine Ethics (Anderson 
and Anderson 2006), Machine Morality (Wallach et al. 2008), Artificial Morality 
(Danielson 1992), or Computational Ethics (Allen 2002) is emerging.  
 
This interest in building computer systems capable of making moral decisions  
(“moral machines”) has been spurred by the need to insure that increasingly 
autonomous computer systems and robots do not cause harm to humans and 
other agents worthy of moral consideration (Wallach and Allen 2008). Though the 
goals of this new research endeavor are more practical than theoretical, an 
interest in testing whether consequentialist, deontological, and virtue based 
theories of ethics can be implemented computationally has also attracted 
philosophers and social scientists to this new field.  Most of the research to date 
is directed at either the safety of computers that function within very limited 
domains or at systems that serve as advisors to human decision makers. 
 
AGI and Machine Morality have emerged as distinct fields of inquiry.  The 
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intersection between their agendas has been minimal, and primarily focused on 
Friendly AI (Yudkovsky 2001), the concern that future super-intelligent machines 
be friendly to human.  But let us be clear at the outset. No AGI systems have 
been completed.  Nor do any computers systems exist that are capable of 
making sophisticated moral decisions. However, some computer scientists 
believe such systems can be build relatively soon. Ben Goertzel estimates that, 
with adequate funding, scientists could complete an AGI within ten years 
(personal communication). Certainly sophisticated moral machines will require at 
least a minimal AGI architecture.   
 
So, if demonstrated success in either of these pursuits is so far in the future, what 
do we expect to achieve in this paper. Our goals are twofold: 
 

1. To outline a comprehensive approach to moral decision making. 
Philosophers and cognitive scientists have stressed the importance of 
particular cognitive mechanisms, e.g., reasoning, moral sentiments, 
heuristics, intuitions, or a moral grammar in the making of moral decisions. 
But there has been very little work on thinking comprehensively about the 
broad array of cognitive faculties necessary for moral decision making.  In 
analyzing how a moral machine might be built from the ground up, it 
becomes apparent that many cognitive mechanisms must be enlisted to 
produce judgments sensitive to the considerations humans accommodate 
when they respond to morally charged situations (Wallach and Allen 
2008).  

 
2. To demonstrate that many moral decisions can be made using the same 

cognitive mechanisms that are used for general decision making. In other 
words, moral cognition is supported by domain general cognitive 
processes. Certainly some kinds of moral decisions may require additional 
mechanisms, or may require that the kinds of mechanisms described in 
this paper be modified to handle features peculiar to moral considerations.  
Elucidation of such mechanisms and their probable design is beyond the 
scope of this paper. 

 
 

 
In proposing a comprehensive model for moral decision making, we are fully 
aware that other scholars will criticize this model as being inadequate.  For 
example, neuroscientists might argue that a modular system such as LIDA does 
not capture the full complexity of the human neural architecture.  Moral 
philosophers might contend that the agent we will describe is not really engaged 
in moral reflection because it lacks Kantian ʻautonomyʼ or ʻwillʼ. The computer 
scientist Drew Mcdermott (forthcoming) asserts that appreciating the tension 
between self-interest and the needs of others is essential for moral decisions and 
will be extremely difficult to build into computational agents.  There are many 
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criticisms that can be made of AGI models, and many arguments as to why 
computational agents are not capable of ʻtrueʼ moral reflection.  
 
Nevertheless, we feel it is important to recognize that moral judgment and 
behavior is not the product of one or two dedicated mechanisms.  Nor do we feel 
it is helpful to merely underscore the complexity of moral decision making.  
Therefore, we offer this model in hopes of stimulating a deeper appreciation of 
the many cognitive mechanisms that contribute to the making of moral decisions, 
and to provide some insight into how these mechanisms might work together. 
 

 

Computation Models of Human Cognitive Faculties 
 
 
A central fascination with AI research has been the opportunity it offers to test 
computational theories of human cognitive faculties. AGI does not require that 
the computational system emulate the mechanisms of human cognition in order 
to achieve a comparable level of performance. However, human cognition is the 
only model we currently have for general intelligence or moral decision making 
(although some animals demonstrate higher order cognitive faculties and pro-
social behavior).  The cognitive and brain sciences are bringing forth a wealth of 
empirical data about the design of the human nervous system, and about human 
mental faculties.  This research suggests a host of new theories for specific 
cognitive processes that can, at least in principle, be tested computationally.  
 
Despite significant gaps in scientific understanding it is feasible to design 
systems that try to emulate the current best understanding of human faculties, 
even if those systems don't perform exactly as the brain functions.  
Computational models of human cognition are built by computer scientists who 
wish to instantiate human-level faculties in AI, and by cognitive scientists and 
neuroscientists formulating testable hypotheses compatible with empirical data 
from studies of the nervous system, and mental and behavioral activity.   
 
Both as a set of computational tools and an underlying model of human 
cognition, LIDA is one attempt to computationally instantiate Baars' Global 
Workspace Theory (GWT).   Such a computational instantiation of GWT, which 
attempts to accommodate the psychological and neuroscientific evidence, will be 
particularly helpful in thinking through an array of challenges with a high degree 
of specificity. In this paper, we will explore how the LIDA model of GWT can be 
expected to implement a higher order cognitive task, specifically the kind of 
decision making involved in the resolution of a moral dilemma. 
 
Given that computational approaches to moral decision making, GWT, and the 
LIDA model are subjects that may not be familiar to all readers, the initial 
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sections of this paper provide brief overviews of these topics.  The next section of 
the paper introduces several approaches to computerizing ethics, GWT, and 
LIDA. The following section provides a description of  the LIDA model, and 
various theories and research that support this approach to human cognition. A 
discussion of the manner in which the LIDA model might be used to make moral 
decisions and some concluding comments follow. 
 

Machine Morality, GWT, and LIDA 

Ethical Decision Making and AI 
 

Ethical decisions are among the more complex that agents face.  Ethical 
decision-making can be understood as action selection under conditions where 
constraints, principles, values, and social norms play a central role in determining 
which behavioral attitudes and responses are acceptable.  Many ethical 
decisions require having to select an action when information is unclear, 
incomplete, confusing, and even false, where the possible results of an action 
cannot be predicted with any significant degree of certainty, and where conflicting 
values can inform the decision making process. 
 
Commonly, ethics is understood as focusing on the most intractable of social and 
personal challenges. Debate often centers on how to prioritize duties, rules, or 
principles when they conflict.  But ethical factors influence a much broader array 
of decisions than those we deliberate upon as individuals or as a community.  
Values and ideals are instantiated in habits, normative behavior, feelings, and 
attitudes. Ethical behavior includes not only the choices we deliberate upon, but 
also the rapid choices that substantiate values – choices that might be modeled 
in LIDA as single-cycle, consciously mediated responses to challenges.  Given 
this broad definition of ethical decisions, values play an implicit role, and 
sometimes an explicit role, in the selection of a broad array of actions.  
 
Following Sloman (1999), we note that moral behavior can be reflexive, or the 
result of deliberation, and at least for humans, also includes metacognition1 when 
criteria used to make ethical decisions are periodically reevaluated.  Successful 
responses to challenges reinforce the selected behaviors, while unsuccessful 
outcomes have an inhibitory influence, and may initiate a reinspection of one's 
actions and behavior selection.  Thus, a computational model of moral decision 
making will need to describe a method for implementing reflexive value laden 
responses, while also explaining how these responses can be reinforced, or 
inhibited through learning, top-down deliberative reasoning, and metacognition.  
 
                                            
1 Sloman speaks of meta-management rather than metacognition. We prefer the 
more common psychological term. 
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It is helpful, although somewhat simplistic, to think of implementing moral 
decision making faculties in AI systems in terms of two approaches: top-down 
and bottom up (Allen et al. 2000, Wallach et al. 2008, Wallach and Allen, 2008).  
A top-down approach entails the implementation of rules or a moral theory, such 
as the Ten Commandments, Kant's categorical imperative, Mill's utilitarianism, or 
even Asimov's laws.  Generally, top-down theories are deliberative and even 
metacognitive, although individual duties may be implemented reactively.  A top-
down approach takes an antecedently specified ethical theory and analyzes its 
computational requirements to guide the design of algorithms and subsystems 
capable of implementing the theory. 
 
A number of scholars have considered the challenges entailed in computational 
implementation of individual top down theories of ethics, including Asimov's laws 
(Clark 1994), Kant's categorical imperative (Allen et al. 2000, Stahl 2002, Powers 
2005), Ross's prima facie duties (Anderson et al. 2005, 2006), deontic logic 
(Bringsford et al. 2006), utilitarianism (Allen et al. 2000, Grau 2006) and virtues 
(Demoss 1998).  Implementing each of these theories poses specific difficulties 
for designers and programmers. Each is susceptible to some version of the 
frame problem -- computational load due to the need for knowledge of human 
psychology, knowledge of the affects of actions in the world, and the difficulty in 
estimating the sufficiency of initial information. 
 
Bottom-up approaches, if they use a prior theory at all, do so only as a way of 
specifying the task for the system, but not as a way of specifying an 
implementation method or control structure.  A bottom-up approach aims at goals 
or standards that may or may not be specified in explicit theoretical terms.  
Evolution, development, and learning provide models for designing systems from 
the bottom up.  Alife (artificial life) experiments within computer environments, 
evolutionary and behavior based robots, and genetic algorithms all provide 
mechanisms for building sophisticated computational agents from the bottom up.  
Bottom-up strategies influenced by theories of development are largely 
dependent on the learning capabilities of artificial agents.  However, the bottom-
up development of moral agents is limited given present day technologies, but 
breakthroughs in computer learning or Alife, for example, might well enhance the 
usefulness of these platforms for developing artificial moral agents (Wallach and 
Allen 2008). 
 
Furthermore, even agents who adhere to a deontological ethic or are utilitarians 
may require emotional intelligence as well as other “supra-rational” faculties 
(Wallach and Allen 2008).  A sense of self, a theory of mind (ToM), an 
appreciation for the semantic content of information, and functional (if not 
phenomenal) consciousness (Franklin, 2003) are probably also prerequisites for 
full moral agency.  A complete model of moral cognition will need to explain how 
such faculties are represented in the system.  
 
Work has begun on the development of artificial mechanisms that complement a 
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system’s rational faculties, such as affective skills (Picard 1997), sociability 
(Breazeal 2002), embodied cognition (Brooks 2002; Glenberg 1997), theory of 
mind (Scasselatti 2001) and consciousness (Holland 2003), but these projects 
are not specifically directed at designing systems with moral decision making 
faculties. Eventually there will be a need for hybrid systems that maintain the 
dynamic and flexible morality of bottom-up systems, which accommodate diverse 
inputs, while subjecting the evaluation of choices and actions to top-down 
principles that represent ideals we strive to meet.  Depending upon the 
environments in which these artificial moral agents (AMAs) operate, they will also 
require some additional supra-rational faculties. Such systems must also specify 
just how the bottom-up and top-down processes interact. 
 
To date, the experimental systems that implement some sensitivity to moral 
considerations (McLaren 2006, Anderson 2006, Guarini 2006) are rudimentary, 
and cannot accommodate the complexity of human decision making.  Scaling 
any approach to handle more and more difficult challenges will, in all likelihood, 
require additional mechanisms.  

Global Workspace Theory 
 
Global workspace theory (GWT) (Baars 1988) was originally conceived as a 
neuropsychological model of consciousness, but has come to be widely 
recognized as a high-level theory of human cognitive processing, which is well 
supported by empirical studies (Baars 2002). GWT views the nervous system as 
a distributed parallel system with many different specialized processes. Some 
coalitions of these processes enable the agent to make sense of the sensory 
data coming from the current environmental situation. Other coalitions 
incorporating the results of the processing of sensory data compete for attention. 
The winner occupies what Baars calls a global workspace, whose contents are 
broadcast to all other processes. These contents of the global workspace are 
presumed to be conscious, at least from a functional perspective. This conscious 
broadcast serves to recruit other processes to be used to select an action with 
which to deal with the current situation. GWT is a theory of how consciousness 
functions within cognition. Unconscious contexts influence this competition for 
consciousness. In GWT, and in its LIDA model, learning requires and follows 
from attention, and occurs with each conscious broadcast. 
 
Given that GWT is a leading model of human cognition and consciousness, it is 
valuable to explore whether a computational model of GWT can accommodate 
higher order mental processes.  Three different research teams, lead by 
Stanislas Dehaene, Murray Shanahan, and Stan Franklin, have developed 
models for instantiating aspects of GWT computationally.  In this paper we focus 
on the LIDA model developed by Franklin and his team.  In doing so, we do not 
mean to suggest that LIDA, or for that matter computational models of cognition 
based on GWT, are the only AGI models capable of modeling human-level 
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decision making.  We merely consider LIDA to be a particularly comprehensive 
model and one that includes features similar to those built into other AGI 
systems.   
 
The LIDA model describes how an agent tries to make sense of its environment 
and decides what to do next.  An action is selected in every LIDA cognitive cycle 
(see below), of which there may be five to ten in every second. More complex 
decisions require deliberation over many such cycles.  The challenge for a model 
of cognition such as LIDA is whether it can truly describe complex higher-order 
decision making in terms of sequences of bottom up, single cycle action 
selection.  
 

LIDA and Moral Decision Making 
 
 
LIDA is a model of human cognition, inspired by findings in cognitive science and 
neuroscience, that is able to accommodate the messiness and complexity of a 
hybrid approach to decision making.  Our task here is not to substantiate one 
formal approach to ethics in LIDA.  Rather, we'll describe how various influences, 
such as feelings, rules, and virtues, on ethical decisions might be represented 
within the mechanisms of the LIDA model.  The resulting agent may not be a 
perfect utilitarian or deontologist, and it may not live up to ethical ideals. A LIDA-
based artificial moral agent (AMA) is intended to be a practical solution to a 
practical problem: how to take into account as much ethically relevant information 
as possible in the time available to select an action. 
 
Our discussion of moral decision making in LIDA will focus on six areas, most 
involving several questions.  
 
1. Where are bottom-up propensities and values implemented? How does the 
agent learn new values and propensities, as well as reinforce or defuse existing 
values and propensities? 
 
2. How are rules or duties represented in the LIDA model? What activates a rule 
and brings it to conscious attention?  How might some rules be automatized to 
form unconscious rules-of-thumb (heuristics)? 
 
3. How does the LIDA model transition from a single cycle to the determination 
that information in consciousness needs to be deliberated upon?   
 
4. What determines the end of a deliberation?   
 
5. How can we implement planning or imagination (the testing out of different 
scenarios) in LIDA? 
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6. When a resolution to the challenge has been determined, how might the LIDA 
model monitor whether that resolution is successful? How might LIDA use this 
monitoring for further learning? 
 
 
In the section that follows we describe the LIDA model, its architecture, its 
antecedents, its relationship to other cognitive architectures, its decision-making, 
and its learning processes.  After that we return to discussing how the LIDA 
model might be used for moral decision-making. In particular, we offer 
hypotheses for how the LIDA model answers each of the questions raised in the 
six issues listed above. Through this exercise we hope to demonstrate the 
usefulness of a computational model of GWT, and how a computer system might 
be developed for handling the complexity of human-level decision-making and in 
particular moral decision-making. Whether a fully functioning LIDA would be 
judged to demonstrate the moral acumen necessary for moral agency is, 
however, impossible to determine without actually building and testing the 
system. 

 

LIDA 

The LIDA Model and its Architecture 
The LIDA model is a comprehensive, conceptual and computational2 model 
covering a large portion of human cognition. In addition to GWT, the model 
implements and fleshes out a number of psychological and neuropsychological 
theories including situated cognition (Varela et al. 1991), perceptual symbol 
systems (Barsalou 1999), working memory (Baddeley and Hitch 1974), memory 
by affordances3 (Glenberg 1997), long-term working memory (Ericsson and 
Kintsch 1995), event segmentation theory (Zacks, et al. 2007),and Sloman’s H-
CogAff (1999). The comprehensive LIDA model includes a broad array of 
cognitive modules and processes, a database of which, including known possible 
neural correlates can be found online at 
http://ccrg.cs.memphis.edu/tutorial/correlates.html. 
 
LIDA is an extension of IDA, an implemented and running software agent that 
finds new billets for US sailors at the end of their current tour of duty (Franklin, 
Kelemen, and McCauley, 1998; Franklin and McCauley, 2003). Parts of LIDA are 
implemented and running. Others are designed and waiting their turn at 

                                            
2 Although the LIDA model is only partially implemented, we claim it as a 
computational model because each of its modules and most of its processes 
have been designed for implementation. 
3 Gibson (1979) introduced the term affordance, meaning that information about 
the available uses of an object existed in the object itself. We are using it in the 
sense that the agent can derive such information from the object. 
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implementation. One can’t simply implement LIDA once and for all. Each distinct 
implementation of the LIDA architecture as a software agent or a robot must be 
accomplished within a given domain with its own domain and task specific 
sensors, effectors and motivations. No single LIDA implementation can control 
different software agents or robots, as each such control structure must be 
adapted to operate with its own distinct sensors, effectors and motivations. 
Franklin’s research group is currently actively engaged in producing a 
computational framework for the LIDA architecture that will serve to underlie and 
facilitate such implementations. But, LIDA is also a work in progress. The 
conceptual LIDA model is being added to, most recently by the addition of Zacks’ 
event segmentation theory (Zacks et al. 2007).  
 
LIDA is a general cognitive architecture that can encompass moral decision 
making. A full account of the stream of processes by which it does so appears for 
the first time in this paper. Earlier papers have described various portions of the 
model and its architecture in some detail (Franklin and Patterson, 2006; Franklin 
and Ramamurthy, 2006; Franklin, et al., 2007; Friedlander and Franklin, 2008; 
Negatu, D’Mello, and Franklin, 2007; Ramamurthy, Baars, D'Mello, and Franklin, 
2006). However, none has spelled out the entire, multifaceted, decision making 
process a la LIDA. While its developers hesitate to claim that LIDA is more 
general or more powerful than other comprehensive cognitive architectures such 
as SOAR (Laird, Newell, and Rosenbloom, 1987), ACT-R (Anderson, 1990), 
Clarion (Sun, 2007), etc., they do believe that LIDA will prove to be both a more 
detailed and a more faithful model of human cognition, including several forms of 
learning, that incorporates the processes and mechanisms required for moral 
decision making.  

The LIDA Cognitive Cycle 
The LIDA model and its ensuing architecture are grounded in the LIDA cognitive 
cycle. Every autonomous agent (Franklin and Graesser 1997), human, animal, or 
artificial, must frequently sample (sense) its environment and select an 
appropriate response (action). Sophisticated agents such as humans process 
(make sense of) the input from such sampling in order to facilitate their decision 
making. Neuroscientists call this three part process the action-perception cycle. 
The agent’s “life” can be viewed as consisting of a continual sequence of these 
cognitive cycles. Each cycle consists of a unit of sensing, of attending and of 
acting. A cognitive cycle can be thought of as a cognitive “moment.” Higher-level 
cognitive processes are composed of many of these cognitive cycles, each a 
cognitive “atom.”    
 
Just as atoms have inner structure, the LIDA model hypothesizes a rich inner 
structure for its cognitive cycles (Baars and Franklin 2003, Franklin et al. 2005). 
During each cognitive cycle the LIDA agent first makes sense of (see below) its 
current situation as best as it can by updating its representation of both external 
and internal features of its world. By a competitive process to be described 
below, it then decides what portion of the represented situation is most in need of 
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attention. This portion is broadcast, making it the current contents of 
consciousness, and enabling the agent to choose an appropriate action and 
execute it.  
 
Figure 1 shows the process in more detail. It starts in the upper left corner and 
proceeds roughly clockwise. 
 
 

 
 

Figure I: LIDA Cognitive Cycle Diagram 
 
The cycle begins with sensory stimuli from external and internal sources in the 
agent’s environment. Low-level feature detectors in sensory memory begin the 
process of making sense of the incoming stimuli. These low-level features are 
passed on to perceptual memory where higher-level features, such as objects, 
categories, relations, situations, etc. are recognized. These entities, which have 
been recognized preconsciously, make up the percept that passed to the 
workspace, where a model of the agent’s current situation is assembled. This 
percept serves as a cue to two forms of episodic memory, transient and 
declarative. Responses to the cue consist of local associations, that is, 
remembered events from these two memory systems that were associated with 
the various elements of the cue. In addition to the current percept, the workspace 
contains recent percepts and the models assembled from them that haven’t yet 
decayed away.  
 
A new model of the agent’s current situation is assembled from the percepts, the 
associations, and the undecayed parts of the previous model. This assembly 
process will typically be carried out by structure-building codelets4.  These 

                                            
4 The term codelet refers generally to any small, special purpose processor or 
running piece of computer code. The concept is essentially the same as Baars’ 
processors (1988), Minsky's agents (1985), Jackson's demons (1987), or 
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structure- building codelets are small, special purpose processors, each of which 
has some particular type of structure it is designed to build.  To fulfill their task 
these codelets may draw upon perceptual memory and even sensory memory, to 
enable the recognition of relations and situations. The newly assembled model 
constitutes the agent’s understanding of its current situation within its world. It 
has made sense of the incoming stimuli. 
 
For an agent operating within a complex, dynamically changing environment, this 
current model may well be too much for the agent to consider all at once in 
deciding what to do next. It needs to selectively attend to a portion of the model. 
Portions of the model compete for attention. These competing portions take the 
form of coalitions of structures from the model. Such coalitions are formed by 
attention codelets, whose function is to bring certain structures to consciousness. 
One of the coalitions wins the competition. In effect, the agent has decided on 
what to attend. 
 
The purpose of this processing is to help the agent decide what to do next. To 
this end, a representation of the contents of the winning coalition is broadcast 
globally, constituting a global workspace (hence the name global workspace 
theory). Though the contents of this conscious broadcast are available globally, 
the primary recipient is procedural memory, which stores templates of possible 
actions including their contexts and possible results. It also stores an activation 
value for each such template that attempts to measure the likelihood of an action 
taken within its context producing the expected result. Templates whose contexts 
intersect sufficiently with the contents of the conscious broadcast instantiate 
copies of themselves with their variables specified to the current situation. 
Instantiated templates remaining from previous cycles may also continue to be 
available. These instantiations are passed to the action selection mechanism, 
which chooses a single action from one of these instantiations. The chosen 
action then goes to sensory-motor memory, where it is executed by an 
appropriate algorithm. The action taken affects the environment, external or 
internal, and the cycle is complete.  
 
The LIDA model hypothesizes that all human cognitive processing is via                    
a continuing iteration of such cognitive cycles. These cycles occur 
asynchronously, with each cognitive cycle taking roughly 300 ms. The cycles 
cascade; that is, several cycles may have different processes running 
simultaneously in parallel. This cascading must, however respect the serial 
nature of conscious processing necessary to maintain the stable, coherent image 
of the world it provides (Merker 2005, Franklin 2005c). Together with the 
asynchrony, the cascading allows a rate of cycling in humans of five to ten cycles 
per second. A cognitive “moment” is thus quite short! There is considerable 
empirical evidence from neuroscience suggestive of and consistent with such 

                                                                                                                                  
Ornstein's small minds (1986). The term was borrowed from Hofstadter and 
Mitchell (1995). 
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cognitive cycling in humans (Massimini et al. 2005, Sigman and Dehaene 2006, 
Uchida, Kepecs and Mainen 2006, Willis and Todorov 2006). None of this 
evidence is conclusive, however. 

Learning in the LIDA model 
Edelman (1987) usefully distinguishes two forms of learning, the selectionist and 
the instructionalist. Selectionist learning requires selection from a redundant 
repertoire that is typically organized by some form of reinforcement learning. A 
repertoire of actions is redundant if slightly different actions can lead to roughly 
the same result. In reinforcement learning (Kaelbling, Littman and Moore 1996) a 
successfully executed action belonging to an existing repertoire is reinforced, 
making it more likely to be chosen the next time the result in question is needed. 
In Edelman’s system little-used actions tend to decay away. Instructional 
learning, in contrast, allows the learning of representations of new actions that 
are not currently in the repertoire.  
 
Global workspace theory postulates that learning requires only attention (Baars 
1988 pp. 213-218). In the LIDA model this implies that learning must occur with 
each cognitive cycle, because whatever enters consciousness is being attended 
to.  More specifically, learning occurs with the conscious broadcast from the 
global workspace during each cycle. Learning in the LIDA model follows the tried 
and true AI principle of generate and test. New representations are learned in a 
profligate manner (the generation) during each cognitive cycle. Those that are 
not sufficiently reinforced during subsequent cycles (the test) decay away. Three 
modes of learning -- perceptual, episodic and procedural -- employing distinct 
mechanisms (Nadel 1992, Franklin et al. 2005), have been designed and are in 
various stages of implementation. A fourth, attentional learning, is contemplated 
but not yet designed. We discuss each individually. 
 
Perceptual learning enables an agent to recognize features, objects, categories 
relations, and situations. In the LIDA model what is learned perceptually is stored 
in perceptual memory (Franklin 2005, Franklin 2005a). Motivated by the Slipnet 
from the Copycat architecture (Hofstadter and Mitchell 1995), the LIDA 
perceptual memory is implemented as a collection of nodes and links with 
activation passing between the nodes. Nodes represent features, individuals, 
categories, actions, feelings and more complex structures. Links, both excitatory 
and inhibitory, represent relations. Each node and link has both a current and a 
base-level activation. The base-level activation measures how useful the node or 
link has been in the past, while the current activation depends on its relevance in 
the current situation. The percept passed on to the workspace during each 
cognitive cycle is composed of those nodes and links whose total activation is 
over the threshold. Perceptual learning in its selectionist form modifies base-level 
activation, and in its instructionalist form creates new nodes and links. One or the 
other or both may occur with the conscious broadcast during each cognitive 
cycle. 
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Episodic learning refers to the memory of events -- the what, the where and the 
when (Tulving 1983, Baddeley, Conway and Aggleton 2001). In the LIDA model 
such learned events are stored in transient episodic memory (Conway 2002, 
Franklin et al. 2005) and in the longer-term declarative memory (Franklin et al. 
2005). Both are implemented using sparse distributed memory (Kanerva 1988), 
which is both associative and content addressable, and has other characteristics 
that correspond to psychological properties of memory. In particular it knows 
when it doesn’t know, and exhibits the tip of the tongue phenomenon. Episodic 
learning in the LIDA model (Ramamurthy, D'Mello and Franklin 2004, 2005) is 
also a matter of generate and test, with such learning occurring at the conscious 
broadcast of each cognitive cycle. Episodic learning is initially directed only to 
transient episodic memory. At a later time and offline, the undecayed contents of 
transient episodic memory are consolidated (Nadel and Moscovitch 1997, 
Stickgold and Walker 2005) into declarative memory, where they still may decay 
away or may last a lifetime.  
 
Procedural learning refers to the learning of new tasks and the improvement of 
old tasks. In the LIDA model such learning is accomplished in procedural 
memory (D'Mello et al. 2006), which is implemented via a scheme net motivated 
by Drescher’s schema mechanism (1991). Each scheme in procedural memory 
is a template for an action, consisting of a context, an action and a result, 
together with a base-level activation intended to measure how likely the result 
would be to occur were the action taken within its specific context. Once again, 
the LIDA model’s procedural learning is via a generate and test mechanism, 
using base-level activation as reinforcement, as well as through the creation of 
new schemes. These new schemes can support multiple actions, both parallel 
and sequential. 
 
Attentional learning, that is, the learning of what to attend to (Estes 1993, 
Vidnyánszky and Sohn 2003) has been relatively little studied by neuroscientists 
or cognitive scientists (but see Kruschke 2003; Yoshida and Smith 2003). 
To our knowledge it has been totally ignored by AI researchers, no doubt 
because few of their systems contain mechanisms for both attention and 
learning. In the LIDA model attentional learning would involve attention codelets, 
small processes whose job it is to focus the agent’s attention on some particular 
portion of its internal model of the current situation. When designed, we envision 
the LIDA model’s attentional learning mechanism involving modulating the base-
level activation of attention codelets, as well as the creation of new ones.  

Feelings and Emotions in the LIDA Model 
The word “feeling” may be associated with external haptic sense, such as the 
feeling in fingertips as they touch the keys while typing. It is also used in 
connection with internal senses, such as the feeling of thirst, of fear of a truck 
bearing down, of the pain of a pinprick, of pressure from a full bladder, of shame 
at having behaved ungraciously, and so on. Here, we are concerned with 
feelings arising from internal senses.  
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Following Johnston (1999), in the LIDA model we speak of emotions as feelings 
with cognitive content, such as the joy at the unexpected meeting with a friend, or 
the embarrassment at having said the wrong thing. The pain in one’s arm when 
scratched by a thorn is a feeling that’s not an emotion, because it does not 
typically involve any cognitive content. Thirst is typically a feeling but not an 
emotion. Though the boundary between emotions and feelings is fuzzy, the 
distinction will prove important to our coming discussion of how feelings and 
emotions motivate low-level action selection and higher-level decision making. 
 
Every autonomous agent must be equipped with primitive motivators, drives that 
motivate its selection of actions. In humans, in animals, and in the LIDA model, 
these drives are implemented by feelings (Franklin and Ramamurthy 2006). Such 
feelings implicitly give rise to values that serve to motivate action selection. 
Douglas Watt describes well the pervasive role of affect, including feelings, 
hypothesized by the LIDA model, as seen from the perspective of human 
neuroscience:  
 

Taken as a whole, affect seems best conceptualized as a highly 
composite product of distributed neural systems that together globally 
organize the representation of value. As such, it probably functions as a 
master system of reference in the brain, integrating encodings done by the 
more modular systems supported in various relatively discrete 
thalamocortical connectivities. Given the central organizing nature of affect 
as a system for the global representation of value, and given evidence that 
virtually all stimuli elicit some degree of affective "valence tagging," it 
would be hard to overestimate the importance of this valence tagging for 
all kinds of basic operations. The centrality of affective functions is 
underlined by the intrinsic interpenetration of affect, attentional function, 
and executive function, and it certainly makes sense that these three 
global state functions would be highly interdependent. It is logically 
impossible to separate representation of value from any neural 
mechanisms that would define attentional foci or that would organize 
behavioral output. (Watt 1998, p. 114)  
 
 

Watt’s emphasis on “representation of value” and  “valence” will be important 
later for our discussion of the role emotions play in moral decision making. This 
section will be devoted to an explication of how feelings are represented in the 
LIDA model, the role they play in attention, and how they act as motivators, 
implicitly implementing values. (Feelings also act as modulators to learning, as 
we describe below.) Referring back to the LIDA cognitive cycle diagram in Figure 
1 may prove helpful to the reader. 
 
Every feeling has a valence, positive or negative. Also, each feeling must have 
its own identity; we distinguish between the pains of a pinprick, a burn, or an 
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insult, and we distinguish pains from other unpleasant feelings, such as nausea. 
From a computational perspective it makes sense to represent the valence of a 
single feeling as either positive or negative, that is, as greater or less than zero, 
even though it may be simplistic to assume that the positive and negative sides 
of this scale are commensurable. Nevertheless, it may be a viable working 
hypothesis that in biological creatures feelings typically have only positive 
valence or negative valence (Heilman 1997). For example, the feeling of distress 
at having to over-extend holding one's breath at the end of a deep dive is a 
different feeling from the relief that ensues with the taking of that first breath. 
Such distress is implemented with varying degrees of negative valence, and the 
relief with varying positive valence. Each has its own identity. For complex 
experiences, multiple feelings with different valences may be present 
simultaneously. For example, the simultaneous fear and exhilaration experienced 
while on a roller coaster. 
 
Feelings are represented in the LIDA model as nodes in its perceptual memory 
(Slipnet). Each node constitutes its own very specific identity, for example, 
distress at not enough oxygen is represented by one node, relief at taking a 
breath by another. Each feeling node has its own valence, always positive or 
always negative, with varying degrees. The current activation of the node 
measures the momentary value of the valence, that is, how positive or how 
negative. Though feelings are subjected to perceptual learning, their base-level 
activation would soon become saturated and change very little. Those feeling 
nodes with sufficient total activations, along with their incoming links and object 
nodes, become part of the current percept and are passed to the workspace. 
 
Like other workspace structures, feeling nodes help to cue transient and 
declarative episodic memories. The resulting local associations may also contain 
feeling nodes associated with memories of past events. These feeling nodes play 
a major role in assigning activation to coalitions of information to which they 
belong, helping them to compete for attention. Any feeling nodes that belong to 
the winning coalition become part of the conscious broadcast, the contents of 
consciousness. Feeling nodes in the conscious broadcast that also occur in the 
context of a scheme in procedural memory (the scheme net) add to the current 
activation of that scheme, increasing the likelihood of it instantiating a copy of 
itself into the action selection mechanism (the behavior net). It is here that 
feelings play their first role as implementation of motivation by adding to the 
likelihood of a particular action being selected. A feeling in the context of a 
scheme implicitly increases or decreases the value assigned to taking that 
scheme’s action.  A feeling in the conscious broadcast in LIDA also plays a role 
in modulating the various forms of learning. Up to a point, the higher the affect 
the greater the learning in the LIDA model. Beyond that point, more affect begins 
to interfere with learning.  
 
In the action selection mechanism the activation of a particular behavior scheme, 
and thus its ability to compete for selection and execution, depends upon several 
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factors.  These factors include how well the context specified by the behavior 
scheme agrees with the current and very recently past contents of 
consciousness (that is, with the contextualized current situation). The contribution 
of feeling nodes to the behavior stream’s activation constitutes the environmental 
influence on action selection. As mentioned earlier, the activation of this newly 
arriving behavior also depends on the presence of feeling nodes in its context 
and their activation as part of the conscious broadcasts. Thus feelings contribute 
motivation for taking action to the activation of newly arriving behavior schemes.  
On the basis of the resulting activation values a single behavior is chosen by the 
action selection mechanism. The action ensuing from this behavior represents 
the agent’s current intention in the sense of Freeman (1999 p. 96ff), that is, what 
the agent intents to do next.  The expected result of that behavior can be said to 
be the agent’s current goal. Note that the selection of this behavior was affected 
by its relevance to the current situation (the environment), the nature and degree 
of associated feelings (the drives), and its relation to other behaviors, some of 
these being prerequisite for the behavior.  
 
The selected behavior, including its feelings, is then passed to sensory-motor 
memory for execution. There the feelings modulate the execution of the action 
(Zhu and Thagard 2002). Feelings may bias parameters of action such as speed 
or force. For example, an angry person picking up a soda may squeeze it harder 
than he would if he weren’t angry. 

Higher-level Cognitive Processes and Levels of Control 
Higher-level cognitive processing in humans includes categorization, 
deliberation, volition, metacognition, reasoning, planning, problem solving, 
language comprehension, and language production. In the LIDA model such 
higher-level processes are distinguished by requiring multiple cognitive cycles for 
their accomplishment. In LIDA, higher-level cognitive processes can be 
implemented by one or more behavior streams5, that is, streams of instantiated 
schemes and links from procedural memory.  
 
Cognitive processes have differing levels of control. Sloman distinguishes three 
levels that can be implemented by the architecture of an autonomous agent -- the 
reactive, the deliberative, and the metacognitive (1999). The first of these, the 
reactive, is the level that is typically expected of many insects, that is, a relatively 
direct connection between incoming sensory data and the outgoing actions of 
effectors. The key point is the relatively direct triggering of an action once the 
appropriate environmental situation occurs. Though direct, such a connection 
can be almost arbitrarily intricate, requiring quite complex algorithms to 
implement in an artificial agent. The reactive level is perhaps best defined by 
what it’s not. “What a purely reactive system cannot do is explicitly construct 
representations of alternative possible actions, evaluate them and choose 
between them, all in advance of performing them” (Sloman 1999). Reactive 

                                            
5 A stream is a sequence with its order only partially specified.  
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control alone is particularly suitable for agents occupying relatively simple niches 
in reasonably stable environments, that is, for agents requiring little flexibility in 
their action selection. Such purely reactive agents typically require relatively few 
higher-level, multi-cyclic cognitive processes. 
 
On the other hand, deliberative control typically employs such higher-level 
cognitive processes as planning, scheduling and problem solving. Such 
deliberative processes in humans, and in some other animals6, are typically 
performed in an internally constructed virtual reality.  Such deliberative 
information processing and decision making allows an agent to function more 
flexibly within a complicated niche in a complex, dynamic environment. An 
internal virtual reality for deliberation requires a short-term memory in which 
temporary structures can be constructed with which to try out possible actions 
“mentally” without actually executing them. In the LIDA model the workspace 
serves just such a function. In the earlier IDA software agent, the action selected 
during almost all cognitive cycles consisted of building or adding to some 
representational structures in the workspace during the process of some sort of 
deliberation. Structure-building codelets, the sub-processes that create such 
structures, modify or compare them, etc., are typically implemented as internal 
reactive processes. Deliberation builds on reaction. In the LIDA model, 
deliberation is implemented as a collection of behavior streams, each behavior of 
which is an internal reactive process (Franklin 2000a). According to the LIDA 
model, moral decision making will employ such processes. 
 
As deliberation builds on reactions, metacognition typically builds on deliberation. 
Sometimes described as “thinking about thinking,” metacognition in humans and 
animals (Smith and Washburn 2005) involves monitoring deliberative processes, 
allocating cognitive resources, and regulating cognitive strategies (Flavell 1979). 
Metacognition in LIDA will be implemented by a collection of appropriate 
behavior streams, each with its own metacognitive task. Metacognitive control 
adds yet another level of flexibility to an agent’s decision making, allowing it to 
function effectively in an even more complex and dynamically changing 
environmental niche. Metacognition can play an important role in the moral 
decision making of humans, who may reflect on the assumptions implicit in the 
values and procedures they apply.  However, it would be necessary to implement 
a fully deliberative architecture before tackling metacognition for any artificial 
agents, including LIDA.  
 
Deliberation in humans often involves language. Of course metacognition and 
language have proved to be very difficult challenges for artificial intelligence. 
While the LIDA model suggests an experimental approach to the challenge 
posed by language and cognition, detailing that approach is beyond the scope of 

                                            
6 Deliberation has been demonstrated in apes (Mulcahy and Call 2006), birds 
(Werdenich and Huber 2006), and may even be found in arachnids (Wilcox and 
Jackson 2002, Tarsitano 2006).  
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this paper. Let it suffice to say that in the conceptual LIDA model, language 
comprehension is dealt with by word nodes and appropriate links in perceptual 
memory, leading to structures in the workspace that provide the semantic content 
of the words. We believe that language generation can be accomplished by 
schemes in procedural memory whose instantiations produce words or phrases. 
Given the complexity that language and language creation introduce to the 
cognitive architecture, the designers of LIDA have tabled this problem until the 
comprehensive LIDA model has been fully implemented computationally. In the 
LIDA model, language comprehension is dealt with by word nodes and 
appropriate links in perceptual memory, leading to structures in the workspace 
that provide the semantic content of the words. Language generation can be 
accomplished by schemes in procedural memory whose instantiations produce 
words or phrases.  Given the complexity that language and language creation 
introduce to the cognitive architecture, the designers of LIDA have tabled this 
problem until the comprehensive LIDA model has been fully implemented 
computationally.  

Volitional Decision Making 
Volitional decision making (volition for short) is a higher-level cognitive process 
for conscious action selection. To understand volition it must be carefully 
distinguished from 1) consciously mediated action selection, 2) automatized 
action selection, 3) alarms, and 4) the execution of actions. Each of the latter 
three is performed unconsciously. Consciously planning a driving route from a 
current location to the airport is an example of deliberative, volitional decision 
making. Choosing to turn left at an appropriate intersection along the route 
requires information about the identity of the cross street acquired consciously, 
but the choice itself is most likely made unconsciously -- the choice was 
consciously mediated even though it was unconsciously made. While driving 
along a straight road with little traffic, the necessary slight adjustments to the 
steering wheel are typically automatized actions selected completely 
unconsciously. They are usually not even consciously mediated, though 
unconscious sensory input is used in their selection. If a car cuts in front of the 
driver, often he or she will have turned the steering wheel and pressed the brake 
simultaneously with becoming conscious of the danger. An alarm mechanism 
has unconsciously selected appropriate actions in response to the challenge. 
The actual turning of the steering wheel, how fast, how far, the execution of the 
action, is also performed unconsciously though with very rapid sensory input.  
 
Though heavily influenced by the conscious broadcast (i.e., the contents of 
consciousness), action selection during a single cognitive cycle in the LIDA 
model is not performed consciously. A cognitive cycle is a mostly unconscious 
process. When speaking, for example, a person usually does not consciously 
think in advance about the structure and content of the next sentence, and is 
sometimes even surprised at what comes out. When approaching the 
intersection in the example above, no conscious thought need be given to the 
choice to turn left. Consciousness serves to provide information on which such 
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action selection is based, but the selection itself is done unconsciously after the 
conscious broadcast (Negatu and Franklin 2002). We refer to this very typical 
single cycle process as consciously mediated action selection.  
 
A runner on an unobstructed sidewalk may only pay attention to it occasionally to 
be sure it remains safe. Between such moments he or she can attend to the 
beauty of the fall leaves or the music coming from the iPod. The running itself 
has become automatized, just as the adjustments to the steering wheel in the 
example above. In the LIDA model such automatization occurs over time with 
each stride initiating a process that unconsciously chooses the next. With 
childhood practice the likelihood of conscious mediation between each stride and 
the next diminishes. Such automatization in the LIDA model (Negatu, McCauley 
and Franklin in review) is implemented via pandemonium theory (Jackson 1987). 
 
Sloman (1998) has emphasized the need for an alarm mechanism such as that 
described in the driving example above.  A neuroscientific description of an alarm 
entails a direct pathway, the “low road,” from the thalamus to the amygdala, 
bypassing the sensory cortices, the “high road,” and thereby consciousness (Das 
et al. 2005). The LIDA model implementing alarms via learned perceptual 
memory alarm structures, bypassing the workspace and consciousness, and 
passing directly to procedural memory. There the appropriate scheme is 
instantiated directly into sensory-motor memory, bypassing action selection. This 
alarm mechanism runs unconsciously in parallel with the current, partly 
conscious, cognitive cycle.  
 
The modes of action selection discussed above operate over different time 
scales. Volition may take seconds, or even much, much longer. Consciously 
mediated actions are selected roughly five to ten times every second, and 
automatized actions as fast as that, or faster. Alarm mechanisms seem to 
operate in the sub 50 ms range. In contrast, the execution of an action requires 
sensory motor communication at roughly forty times a second, all done 
subconsciously (Goodale and Milner 2004). The possibility of hitting a 90 mph 
fast ball coming over the plate, or of returning a 140 mph tennis serve makes the 
need for such sensory motor rates believable. 
 
We now return to a consideration of deliberative, volitional decision making, 
having distinguished it from other modes of action selection and execution, In 
1890, William James introduced his ideomotor theory of volition (1890). James 
uses an example of getting out of bed on a cold winter morning to effectively 
illustrate his theory, but in this age of heated homes we will use thirst as an 
example. James postulated proposers, objectors, and supporters as actors in the 
drama of acting volitionally.  He might have suggested the following scenario in 
the context of dealing with a feeling of thirst. The idea of drinking orange juice 
“pops into mind,” propelled to consciousness by a proposer motivated by a 
feeling of thirst and a liking for orange juice. “No, it's too sweet,” asserts an 
objector. “How about a beer?” says a different proposer. “Too early in the day,” 
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says another objector. “Orange juice is more nutritious,” says a supporter. With 
no further objections, drinking orange juice is volitionally selected.   
 
Baars incorporated ideomotor theory directly into his global workspace theory 
(1988 chapter 7). The LIDA model fleshes out volitional decision making via 
ideomotor theory within global workspace theory (Franklin 2000b) as follows. An 
idea “popping into mind” in the LIDA model is accomplished by the idea being 
part of the conscious broadcast of a cognitive cycle, that is, part of the contents 
of consciousness for that cognitive moment. These contents are the information 
contained within the winning coalition for that cycle. This winning coalition was 
gathered by some attention codelet. Ultimately, this attention codelet is 
responsible for the idea “popping into mind.” Thus we implemented the 
characters in James’ scenario as attention codelets, with some acting as 
proposers, others as objectors, and others as supporters. In the presence of a 
thirst node in the workspace, one such attention codelet, a proposer codelet, 
wants to bring drinking orange juice to mind, that is, to consciousness. Seeing a 
let’s drink orange juice node in the workspace, another attention codelet, an 
objector codelet, wants to bring to mind the idea that orange juice is too sweet. 
Supporter codelets are implemented similarly.  
 
But, how does the conscious thought of “Let’s drink orange juice,” lead to a let’s-
drink-orange-juice node in the workspace? Like every higher-order cognitive 
process in the LIDA model, volition occurs over multiple cycles, and is 
implemented by a behavior stream in the action selection module. This volitional 
behavior stream is an instantiation of a volitional scheme in procedural memory. 
Whenever a proposal node in its context is activated by a proposal in the 
conscious broadcast, this volitional scheme instantiates itself. The instantiated 
volitional scheme, the volitional behavior stream, is incorporated into the action 
selection mechanism, the behavior net. The first behavior in this volitional 
behavior stream sets up the deliberative process of volitional decision making as 
specified by ideomotor theory, including writing the let’s-drink-orange-juice node 
to the workspace7. 
 
Our fleshing out of ideomotor theory in the LIDA model includes the addition of a 
timekeeper codelet, created by the first behavior in the volitional behavior stream. 
The timekeeper starts its timer running as a consequence of a proposal coming 
to mind. When the timer runs down, the action of the proposal contends in the 
behavior net to be the next selected action, with the weight (activation) of 
deliberation supporting it.  The proposal is most likely to be selected barring an 
objection or an intervening crisis. The appearance of an objection in 

                                            
7 Alternatively, this node could arrive in the workspace with the percept of the 
following cycle as a result of internal sensing of the internal speech. In LIDA, this 
is only an implementation matter, making no functional difference. In humans this 
is an empirical matter to be decided by experiment. Thus the design decision for 
LIDA becomes a cognitive hypothesis. 
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consciousness stops and resets the timer, while that of a supporter or another 
proposal restarts the timer from a new beginning. Note that a single proposal with 
no objection can be quickly accepted and acted upon. 
 
But, might this volitional decision making process not oscillate with continuing 
cycles of proposing and objecting as in Eric Berne’s “what if” game (1964)? 
Indeed it might. The LIDA model includes three means of reducing this likelihood. 
The activation of a proposer codelet is reduced each time it succeeds in coming 
to consciousness, thus decreasing the likelihood of its winning during a 
subsequent cognitive cycle. The same is true of objector and supporter codelets. 
The LIDA model hypothesizes that supporting arguments help in decision making 
in part by giving the supported proposal more time in consciousness, allowing 
more time off the timer. As a second means of preventing oscillation, impatience 
is built into the timekeeper codelet. Each restart of the timer is for a little less 
time, thus making a decision easier to reach. Finally, a metacognitive process 
can watch over the whole volitional procedure, eventually decide that it has gone 
on long enough, and simply choose an alternative. This latter process has not yet 
been implemented. 
 

LIDA in Comparison to Other Cognitive Architectures 
 
Competing theories within the cognitive and neuro- sciences suggest different 
approaches to understanding specific human mental faculties. In describing how 
the LIDA model handles various tasks, we do not mean to suggest that other 
approaches are incorrect.  However, it is beyond the scope of this paper to 
discuss the competing theories or approaches. The LIDA model attempts to 
formulate an approach to AGI that accommodates a significant portion of what is 
known about human functioning through the work of cognitive scientists and 
neuroscientists.  It is possible that researchers will eventually demonstrate that 
GWT, upon which the LIDA model has been built, is inadequate for 
understanding human cognition.  
 
LIDA differs from most other cognitive architectures in several significant ways. 
Here’s a short, selective, but certainly non-exhaustive list. 
 
Most cognitive architectures are either symbolic or connectionist, though some 
incorporate aspects of both, e.g., Clarion (Sun, 2007) and ACT-R (Anderson 
1990). Strictly speaking, LIDA is neither. Though LIDA’s internal representations 
are mostly comprised of nodes and links, the nodes are not symbolic, i.e., 
amodal.  Rather, they should be thought of as perceptual symbols or perceptual 
symbol generators in the sense of Barsalou (1999). Also, passing activation 
occurs throughout the LIDA architecture, but none of it is quite in the mode of 
artificial neural networks. For example, major modes of learning in LIDA are not 
performed by changing weights on links. Rather, in instructionist learning, new 
representations are added appropriate to the particular mode, nodes and links to 
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perceptual associative memory, Boolean vectors to transient episodic memory, 
or schemes to procedural memory, In selectionist learning the base-level 
activations of old representations are boosted or diminished. 
 
Following GWT, the LIDA architecture incorporates a specific attention 
mechanism that selects the most salient, e.g., important, urgent, insistent, portion 
of its understanding of its current situation for broadcast to all of the modules of 
the architecture. This broadcast serves both to recruit possible appropriate 
response actions, and to effect several modes of learning. Other than the much 
less comprehensive models of Shanahan (2006) and Dehaene’s also much less 
comprehensive neural network model (Dehaene, Sergent, and Changeux, 2003), 
LIDA is the only such cognitive architecture. 
 
Many of the other general cognitive architectures mentioned above incorporate 
some form of learning. However, LIDA is unique, to our knowledge, in enabling 
four distinct modes of learning, perceptual, episodic, procedural and attentional, 
each modeled after the corresponding mode of human learning. Each mode is 
human-like in the sense that the learning is unsupervised, continual, and is both 
selectionist and instructionalist. 
 
Every cognitive architecture must operate via an iteration of sense-cognize-act 
cycles.8 The LIDA architecture is unique in distinguishing low level, single 
cognitive cycle action selection from higher-level multi-cyclic decision making. 
LIDA’s cognitive cycle, hypothesized to occur at a 10hz rate in humans, can be 
thought of as a cognitive atom or moment, from sequences of which higher-level 
cognitive processes can be implemented in a consistent fashion.  
 
Though there’s been much research on artificial feelings and emotions (e.g., 
Canamero, 2003; Gadanho, 2003), to our knowledge LIDA is the only 
comprehensive cognitive architecture to incorporate feelings and emotions as its 
sole implementation of motivations for action selection, as well as for modulators 
of learning (Franklin and Ramamurthy, 2006). 
 
 

                                            
8 This doesn’t mean that these cycles need be in strict serial order. Many of the 
processes within a cycle can operate in parallel. And, the cycles can overlap or 
cascade. In the LIDA model only the conscious broadcast and the action 
selection must occur in serial order. 
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Processing Moral Considerations Within the LIDA Model 

 

Bottom-Up Propensities, Values, and Learning 
Complex moral faculties involve reflection about and modification of the bottom-
up propensities embodied in emotional/affective responses to actions and their 
outcomes. Bottom-up propensities in the form of feelings and inherent values 
influence morality but they are not necessarily reflective of the values a society 
would recognize as moral values. Negative feelings may, for example, lead to 
prejudices by automatically attaching to entities that are not a part of the agent’s 
immediate group. From a moral perspective, it is important to understand how 
top-down considerations interact with these bottom-up propensities reinforcing 
"good" ones and defusing if not actually eliminating "bad" ones.  The approach 
LIDA offers to the challenge of implementing this hybrid system begins with the 
way an agent captures bottom-up propensities and the values implicit in these 
propensities.  
 
Associations between objects, people, contexts, actions, situations, etc. and 
specific feelings and their valences (positive or negative) are the primary way 
values and bottom-up propensities form in an agent's mind. The values are 
implicit in the feelings and their valences, and LIDA captures this dynamic.  
These associations may arise during perception where sensory input is 
connected to nodes (objects, feelings, ideas, categories, actions) in perceptual 
memory. These nodes in turn activate and connect to information retrieved from 
the various memory systems, which in LIDA are represented as separate 
memory modules.  
 
Feelings and perceptions that arise within the same LIDA cycle may form 
associations, particularly when the affective input is strong. But unless the 
sensory input is particularly strong and sustained, or the initial input cues 
associated memories, the perception of the objects and situations, and their 
associated affects, decay quickly and disappear. 
 
The strength of a value, the strength of the connection between feeling and 
object or situation, is reinforced by sustained sensory input, but these values are 
short-lived unless the information comes to attention.  Attention reinforces a 
connection for the longer term through perceptual and episodic learning.  
Powerful memories, that is, memories linked to strong valences, are reinforced 
each time they come to attention.  
 
LIDA's perceptual memory (a part of long-term memory) is implemented by a 
Slipnet, a network of nodes, and links between the nodes, that represent 
structures and concepts. Features, objects, and valenced feelings can be nodes, 
and links between these nodes represent relationships that can form more 
complex structures (percepts). These percepts pass on to the system's working 
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memory9 (workspace) from which they cue associated information in other areas 
of short and long-term memory, and this information in turn leads to further 
associations that may enrich or alter the percepts.  
 
Particularly difficult challenges for LIDA, similar to those encountered by any 
human-like computer architecture, are how sensory input leads to the activation 
of nodes in the Slipnet and how new nodes can be created to represent new 
phenomena.  In principle, individual subroutines or codelets can search for 
specific sensory input, process that information, and pass it on to the activation of 
a node. Or, similarly, a neural network might organize sensory input.  But using 
current computational technology it becomes difficult to scale either of these 
approaches to manage a broad array of inputs and nodes.  
 
In addition, there is the difficult problem of determining how to represent valences 
in the Slipnet. Must they be represented as somatic feelings or is it adequate to 
use a cognitive representation of the valence.  If the feeling is expunged of any 
somatic affect, and serves merely as a symbol or mathematical formula 
representing the positive or negative feeling, will it carry the full import of the 
feeling as it is factored into the selection of an action?  
 
These are not easy problems, but LIDA does offer an architecture for integrating 
presently available solutions.  Given the modularity of LIDA, it will also be able to 
integrate more sophisticated solutions to these challenges as they emerge from 
laboratories focusing on the development of specific hardware and software 
tools.  

Moral Deliberation Involving Rules 
In almost all situations our action selection decisions, including those that could 
be said to involve morals, are made in a bottom up fashion during a single 
cognitive cycle as described above. Much more rarely, but still with some 
frequency, our moral decisions are more complex and require some thought, that 
is, deliberation. Such a situation might occur when we are faced with a moral 
dilemma. This often leads to conflicting voices in our heads, some of which might 
frame their arguments in terms of rules, for example, “thou shalt not kill”. Let’s 
consider how such rules are represented in the LIDA model. What activates a 
rule and brings it to conscious attention?  How might some rules be automated to 
form rules-of-thumb?  
 
A specific example of an inner dialogue about a moral dilemma may help. 
Suppose the company you work for licenses some new, expensive computer 
software, say Adobe's Photoshop.  After becoming comfortable with the new 
software package at work, you feel the urge to copy it onto your home computer. 

                                            
9 Working memory, in the way psychologists use the term (Baddeley 1992) 
includes consciousness. In the LIDA model, working memory (the workspace) is 
preconscious in each cognitive cycle. 
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An internal dialog commences, but not necessarily as wholly verbal and 
grammatical as what follows. “Let’s bring Photoshop home and load the program 
on my Mac.” “You shouldn’t do that. That would be illegal and stealing.” “But I’d 
use it for work related projects that benefit my company, which owns the 
software.” "Yes, but you’d also use it for personal projects with no relation to the 
company.” “True, but most of the work would be company related.” Etc., etc., etc. 
 
In such a case, one's decision making is happening consciously, volitionally. The 
LIDA model describes the handling of such a situation by means of a higher 
order, multi-cyclic, deliberative process. This conscious, volitional process was 
described earlier in the section entitled Volitional Decision Making. Recall that the 
internal players included proposers, objectors, supporters, and a timekeeper. 
Each of the first three players is implemented in the model by an attention 
codelet that brings ideas to consciousness.  
 
In our example, a proposer, winning the competition for consciousness, causes 
the idea of copying Photoshop to the home Mac to “pop into mind.” This proposal 
in consciousness impels the instantiation of a deliberation scheme whose first 
action, the birth of the timekeeper, the starting of the timer and the writing of the 
proposal node to the workspace, is selected as the action of the current cycle. In 
a subsequent cycle that follows soon after, an objector succeeds in bringing to 
consciousness the idea of “no that would be stealing.” The action selected in this 
cycle would be to stop and reset the timer. A supporter brings the next idea to 
consciousness, the timer is restarted, and the process continues over the 
succeeding cognitive cycles. The game is afoot.   
 
Note that the first objector implicitly based its objection on the rule “thou shalt not 
steal.” To describe how and where this moral dictum is represented in the LIDA 
model, and how it plays its role, we begin at the end of the proposal cycle with 
the proposal structure (“let’s copy Photoshop”) in the workspace. There, because 
of a prior semantic association between copying and stealing it cues the rule 
“thou shalt not steal” from semantic memory, a part of declarative memory 
(Franklin et al. 2005). The rule is represented as a structure in the workspace, 
that is, as a collection of nodes and links from perceptual memory, the common 
currency for information in the LIDA model (Franklin 2005b). An objector 
attention codelet then forms a coalition whose informational content is “don’t 
copy Photoshop, that would be stealing.” This objection coming to consciousness 
and stopping the timer constitutes the rule playing its role in moral decision 
making.  
 
Rules and duties are stored in semantic memory as perceptual structures. Cued 
by a proposal or an objection the rule is recalled into working memory as a local 
association and brought to consciousness to participate in the internal dialogue. 
Note that a supporter, as well as an objector, can invoke a rule. The dialogue 
stops when a proposal is on the table without further objection long enough for 
the timer to ding. At that point a scheme in procedural memory that knows how to 
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act on the proposal is instantiated into the action selection mechanism with a 
high activation. Thus its selection is assured barring some crisis or other alarm.  
 
But sometimes this kind of top-down, rule-based decision making can shift to a 
bottom-up, affect-based action selection. Each time an application of a rule or 
duty comes to consciousness it, like every conscious event, becomes subject to 
perceptual learning. If a particular rule is applied frequently in similar situations, 
LIDA may produce a category node in perceptual memory, representing that rule 
in an abstract version of the similar situations. In our example, our moral decision 
making agent might learn the abstract node "don’t copy software if you don’t 
have a license for it". If such a node is reinforced often enough this application of 
the rule is automatic. During the extended learning process the node would 
acquire links to other nodes, particularly to feelings with negative valence. Thus 
when faced with a situation where copying software might be tempting, this rule 
node can become part of the percept.  Its presence in the workspace would then 
inhibit proposer codelets from proposing copying software, that is, by invoking 
the rule automatically.  
 
Why does the internal dialogue begin?  We’ve seen how it begins. It begins with 
a proposer-attention codelet bringing a proposal into mind, into the global 
workspace, that is “popping it into mind.” But, why isn’t the action, copying the 
software for example, simply selected as the consciously mediated action at the 
end of a single cycle, with no dialogue at all?  In some specific situations copying 
software is permissible. The software license may allow installation on two 
machines, office and home, for use by a single user. If encountered frequently 
enough, a scheme for copying software can be procedurally learned with this 
situation as its context. In such a case, copying software can become a 
consciously mediated action that is selected during a single cycle10. But, in order 
for such a scheme to be procedurally learned, its action must have been selected 
volitionally at least once; that is, some deliberative process must have allowed it.  
 
Generally it’s the perceived novelty of a given situation that leads to it being the 
subject of deliberation, rather than simply selected. It’s the newness, or at least 
apparent newness, of a situation that in effect demands that the agent think 
about it. New situations do not fit neatly into innate or learned heuristics, and 
therefore these situations demand attention.  In attending to new circumstances, 
associated proposals and objections naturally come to mind. 
 

                                            
10 The actual process is a little more complex. A behavior stream whose 
behaviors result in copying software would be instantiated into LIDA’s action 
selection mechanism and the first behavior in that stream likely would be 
selected. 
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The Implementation of Planning and Imagination  
Moral decision making in humans often involves the planning of various possible 
scenarios and the testing of them in our imagination. Imagination entails the 
creation of mental images of objects, actions, situations that are not necessarily 
current in the outside world. The material for this personal mental realm derives 
from present and past perceptions of the outside material world and may include 
some imaginary elements or revisions to existing elements.   
 
The testing of multiple scenarios will, of course, require many cognitive cycles.  
Some cycles may be devoted to examining an internal scenario while others may 
entail actions performed on or with external objects.  As an example, consider an 
architect who has been given the task of designing a house for a wooded lot 
while saving as many trees as possible. Part of the architect's training would 
have involved learning complex internal behavior streams for constructing and 
manipulating scenarios by placing various rooms at particular locations. Other 
internal behavior streams would allow the evaluation of such scenarios (mental 
floor plans on the lot) using functional, aesthetic, and moral criteria. Volitional 
decision making, as described above, would employ yet other behavior streams 
to decide which of the constructed scenarios to select. Appropriately, in LIDA, the 
central site for much of this work is the workspace, though an embodied LIDA-
based robot might also put ideas on paper. This evaluation of possible scenarios 
could be accomplished without actually cutting down a single tree, and before 
drawing any building plan. Deliberation will have done its job. 
 
As we’ve seen previously, each agent that is controlled by LIDA‘s architecture, 
including we humans (presuming that LIDA captures the way we function), will 
understand its environment by means of a model built in the workspace by 
structure-building codelets. The components of which this internal model of the 
world is built are nodes and links from perceptual memory, the common currency 
of the LIDA architecture (Barsalou 1999). The agent’s internal representation 
serves to model both the agent’s external environment and its internal 
environment.  We hypothesize this internal representation in the workspace as 
the site of the structures that enables imagination including deliberation on 
multiple scenarios.  
 
These internal deliberative structures are built in the workspace using, among 
other things, material written there over multiple cognitive cycles by behaviors 
selected at the end of a cognitive cycle whose actions are internal, that is, 
actions that effect changes within the agent itself, rather than on the outside 
world. The results of such internal actions may be perceived by the agent 
through its internal senses, or may be written directly to the workspace, and may 
also in turn be externalized when, for example, the architect adds a new element 
to a drawing of the building.  All of these possibilities occur in humans. 
 
Ultimately, for moral deliberation to be appropriately modeled by LIDA, attention 
codelets that are sensitive to morally relevant information will need to be 
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designed. Whether the design of such morally sensitive codelets differs from the 
general design of codelets that search for concrete information remains to be 
seen.  But minimally, for example, we expect that attention codelets that are 
sensitive to concrete information about the facial and vocal expressions of people 
affected by an AMA's actions will need to be part of the mix. The advantage of 
codelets is that they provide an indefinitely extensible framework for taking more 
and more of the relevant factors into account. 
 
The selected internal behaviors that contribute to a deliberation are organized 
into behavior streams that serve to implement the deliberative process at hand. 
Such deliberative behavior streams would typically be a product of procedural 
learning. In our architect’s save-the-trees example, a complex behavior stream 
with behaviors to construct a scenario placing various rooms at particular 
locations would have been learned.  Another internal behavior stream would 
allow the evaluation of such scenarios (mental or drawn floor plans on the lot) 
using functional, aesthetic, and moral criteria. Volitional decision making, as 
described above, would employ yet another behavior stream to decide which of 
the constructed scenarios to select. Appropriately, the central site for much of 
this work is the workspace, sometimes complemented by those elements of the 
deliberation that have been concretized into external forms such as the architects 
drawing, a mathematical formula, a painting, or a list of criteria by which the 
scenario should be evaluated.  
 
As described in the section above on Higher-level Cognitive Processes and 
Levels of Control, metacognition in the LIDA model involves the use of 
deliberation in much the same way as the kind of planning we’ve just described. 
Metaethical reflections would be a special case of such metacognition, when the 
issue at hand was the efficacy or appropriateness of a moral rule or criterion.  As 
mentioned above, we introspectively presume that language and inner voices are 
central to metaethical reflections.  However, the fleshing out of metacognition 
and metaethics is far beyond the scope of this article, and beyond anything that 
has been implemented in the LIDA model to date.  
 
Resolution, Evaluation, and Further Learning 
 
A LIDA-based agent would reach a resolution to a volitional decision when 
there is no longer an objection to a proposal. Given that the activation of 
an objection decays in repeat cycles, strongly activated proposals will in 
time prevail over weak objections. However, attention codelets 
responsible for proposals and their supporters also weaken in their 
activation as they succeed in coming into consciousness during multiple 
cycles.  Weak proposals may also lose the competition for attention to 
other concerns demanding attention, defusing any pressure or need for 
the agent to act on the challenge. Highly activated rules, duties, or other 
objectors will outlast weak proposers, and force the development of more 
creative proposals that accommodate the strong objections.    
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However, time pressures may force a decision before all objections have 
been dispelled. Decay in the strength of proposals and objections, time 
pressures on decision making, and pressures from other concerns can 
drive the selection of a response to a challenge even when the response 
is inadequate or incomplete. Two mechanisms facilitate dealing with time 
pressures in the LIDA model.   An attention codelet noting the time frame 
within which the decision must be made would actually increase its 
activation as the deadline neared.  The second mechanism is the 
timekeeper, discussed above, which manages the volitional decision 
making process. Recall that impatience is built into the timekeeper. Each 
restart of the timer is for less time, making a decision easier to reach. An 
attention codelet reminding of an approaching deadline accelerates this 
process by continually reducing the time on the timer cycle by cycle. 
 
Furthermore, moral deliberations seldom vanquish all objections even with 
a generous allocation of time. Moral decisions are often messy, but the 
LIDA architecture has the means to produce adaptive behavior despite the 
complexity. Furthermore, future LIDA inspired moral agents may consider 
a broader array of proposals, objections, and supporting evidence than a 
human agent can, and thereby, perhaps, select a more satisfactory course 
of action than many humans. 
 
A LIDA agent, like a human agent, may well be highly susceptible to 
acting upon strongly reinforced impulses and proposals without 
necessarily considering the needs of others. That is, the LIDA model in 
and of itself is morally neutral. What LIDA does offer is a model for 
computer learning that could provide steps towards a more complete 
model of moral education.  
 
The manner in which a LIDA-based artificial moral agent monitors its 
actions will be important to its moral development. When a resolution to a 
moral challenge has been determined, such an agent monitors the 
success of the resulting actions as it would any other action, primarily by 
means of an expectation codelet. An expectation codelet is an attention 
codelet that is spawned simultaneously with the selected action. The job 
of this expectation codelet is to bring to consciousness information about 
the outcome of the action. In particular, the expectation codelet would 
become strongly activated by discrepancies between the predicted result 
of a course of action and its actual result. Attention to this discrepancy will 
in turn reinforce or inhibit the application of that behavior to future similar 
challenges.  In this manner, attention to how the result correlates with the 
prediction contributes to procedural learning. This general model of 
procedural learning is applicable to moral development in the context of an 
agent that has explicitly factored moral considerations into the selection of 
an action, and into its expectations about the positive moral outcome of 
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the selected action.  
 

Moving Forward 
 
In this paper we have sought to demonstrate how moral decision making builds 
upon mechanisms used for the other forms of cognition. LIDA provides one 
comprehensive model through which to consider the many mechanisms that 
contribute to the ability to make a moral judgment. Furthermore, we have offered 
some hypotheses as to how these mechanisms might work together. 
 
The value of a comprehensive theory, such as the GWT/LIDA model, is 
that it provides a framework for integrating input from a wide variety of 
sources. A modular system, such as LIDA, can support a broad range of 
inputs. Modular computer systems do not depend entirely on the ingenuity 
of one design team.  The designers of comprehensive systems can draw 
on the best-of-breed in the selection of modules developed by other 
researchers for managing sensory input, perception, or various forms of 
memory including semantic memory and procedural memory.  For 
example, if a better model than sparse distributed memory became 
available for transient episodic memory, and that model had been 
implemented computationally, the new module could be integrated into a 
LIDA agent instead. The one proviso would be that the output from that 
module and input to that module could be structured to work with the 
perceptual nodes in the Slipnet, LIDA’s common currency.  
 
In the GWT/LIDA model, competition for consciousness between different 
coalitions, global broadcasting of the winning coalition, and the selection 
of an action in each cycle, can be thought of as the mechanisms for 
integrating the input from the various sources. The unconscious parallel 
processing of information, the speed of the cycles, and the multi-cyclic 
approach to higher-order cognitive faculties holds out the promise that a 
LIDA-like moral agent could integrate a wide array of morally relevant 
inputs into its choices and actions. 
 
Nevertheless, we do not want to give the impression that AI projects such 
as LIDA can solve all problems. LIDA, like other AI procedures for 
choosing actions and testing scenarios, has the problem of scaling--that is 
a problem of whether its strategy can be adapted to handle the building 
and evaluation of complex scenarios.  Furthermore, the discussion above 
raises a host of additional questions.  Do the mechanisms suggested by 
these descriptions capture important aspects of the human decision 
making process?  Even if humans function differently, are the mechanisms 
described adequate to capture the practical demands of moral decision 
making?  Are the mechanisms for representing the conflict between 
different rules (proposers and objectors) too simplistic to capture the rich 
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dynamics of human moral decision making?  Is the functional model of 
consciousness suggested by GWT and the LIDA model adequate? Or, will 
the agent require some form of phenomenal experience that is not 
captured in the system described?  Can morality really be understood 
without a full description of its social aspects?  How well would LIDA 
handle the kinds of delicate social negotiations that are involved in 
managing and regulating the conflicts that arise among agents with 
competing interests? 
 
While we, and others working with the model, are able to suggest ways 
that LIDA could meet these challenges, initially these approaches will be 
only theories with no proof of concept.  For example, we are aware that 
LIDA will need something like a Theory of Mind (ToM) to function 
adequately within social contexts, and are working through ways that the 
model might be adapted to accommodate an appreciation of other's 
beliefs and intents. We believe that it may be possible to build a ToM into 
the model using its existing modules and processes (Friedlander and 
Franklin. 2008), but as of this writing there is no ToM in LIDA. Certainly 
the structure-building and attention codelets sensitive to the emotional 
expressions on people's faces that were mentioned earlier would be an 
aspect of building a ToM into LIDA. 
 
Of course, many will remain suspicious of mechanical explanations of 
moral faculties.  But the proof, as has been often said, will be in the 
pudding.  What has been described above is certainly not a demonstration 
that fully functioning AMAs will emerge from computational systems.  
Rather, we have outlined one rich experimental framework for exploring 
this possibility.   
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