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A Foundational Architecture for Artificial General Intelligence 
 

By Stan Franklin 
Computer Science Department & 
Institute for Intelligent Systems 

The University of Memphis 
 

Abstract 

Implementing and fleshing out a number of psychological and neuroscience 
theories of cognition, the LIDA conceptual model aims at being a cognitive 
“theory of everything.” With modules or processes for perception, working 
memory, episodic memories, “consciousness,” procedural memory, action 
selection, perceptual learning, episodic learning, deliberation, volition, and non-
routine problem solving, the LIDA model is ideally suited to provide a working 
ontology that would allow for the discussion, design, and comparison of AGI 
systems. The LIDA architecture is based on the LIDA cognitive cycle, a sort of 
“cognitive atom.” The more elementary cognitive modules and processes play a 
role in each cognitive cycle. Higher-level processes are performed over multiple 
cycles. In addition to giving a quick overview of the LIDA conceptual model, and 
its underlying computational technology, we argue for the LIDA architecture’s role 
as a foundational architecture for an AGI. Finally, lessons For AGI researchers 
drawn from the model and its architecture are discussed. 

Introduction 

Early AI researchers aimed at what was later called “strong AI,” the simulation of 
human level intelligence. One of AI’s founders, Herbert Simon, claimed (circa 
1957) that “… there are now in the world machines that think, that learn and that 
create.” He went on to predict that with 10 years a computer would beat a 
grandmaster at chess, would prove an “important new mathematical theorem, 
and would write music of “considerable aesthetic value.” Science fiction writer 
Arthur C. Clarke predicted that, “[AI] technology will become sufficiently 
advanced that it will be indistinguishable from magic” (1962). AI research had as 
its goal the simulation of human-like intelligence. 
 
Within a decade of so, it became abundantly clear that the problems AI had to 
overcome for this “strong AI” to become a reality were immense, perhaps 
intractable. As a result, AI researchers concentrated on ”weak AI” (now often 
referred to as “narrow AI”), the development of AI systems that dealt intelligently 
with a single narrow domain. An ultimate goal of artificial human-level intelligence 
was spoken of less and less. 
 
As the decades passed, narrow AI enjoyed considerable success. A killer 
application, knowledge-based expert systems, came on board. Two of Simon’s 
predictions were belatedly fulfilled. In May of 1997, Deep Blue defeated 
grandmaster and world chess champion Garry Kasparov. Later that year, the 



sixty-year-old Robbins conjecture in mathematics was proved by a general-
purpose, automatic theorem-prover (McCune 1997). Narrow AI had come of age. 
 
More recently, and perhaps as a result, signs of a renewed interest in a more 
human-like, general artificial intelligence began to appear. An IEEE Technical 
Committee on Autonomous Mental Developmental was formed, aimed at human-
like learning for software agents and mobile robots. Motivated by the human 
autonomic nervous system, IBM introduced self-managed computer systems, 
called autonomic systems, designed to configure themselves, to heal 
themselves, to optimize their performance, and to protect themselves from 
attacks. In April of 2004, DARPA, the Defense Advanced Research Projects 
Agency sponsored a workshop on Self-Aware Computer Systems which led to a 
call for proposals to create such systems. AAAI-06 had a special technical track 
on integrated intelligent capabilities, inviting papers that highlight the integration 
of multiple components in achieving intelligent behavior. All these are trends 
toward developing an artificial, human-like, general intelligence. 
 
The next major step in this direction was the May 2006 AGIRI Workshop, of 
which this volume is essentially a proceedings. The term AGI, artificial general 
intelligence, was introduced as a modern successor to the earlier strong AI. 

Artificial General Intelligence 

What is artificial general intelligence?  The AGIRI website lists several features, 
describing machines 

• with human-level, and even superhuman, intelligence  

• that generalize their knowledge across different domains   

• that reflect on themselves  

• and that create fundamental innovations and insights. 
 
Even strong AI wouldn’t push for this much, and this general, an intelligence. Can 
there be such an artificial general intelligence?  I think there can be, but that it 
can’t be done with a brain in a vat, with humans providing input and utilizing 
computational output. Well, if it can’t be a brain in a vat, what does it have to be? 
Where can one hope to create artificial general intelligence (AGI)? 

Autonomous Agents 

Perhaps it can be created as an autonomous agent.  And what’s an autonomous 
agent?  Biological examples include humans and most (all?) animals. Artificial 
autonomous agent can include software agents such as the bots that serve to 
populate Google’s databases, and our IDA that does personnel work for the U.S. 
Navy (Franklin 2001, 2005a). Other such examples include some mobile robots 
and computer viruses. But what do I mean by autonomous agent? Here’s a 
definition (Franklin and Graesser 1997). It’s a system that 

• is embedded in an environment,  

• is a part of that environment, 

• which it senses, 



• and acts on,  

• over time, 

• in pursuit of its own agenda (no human directs its choice of actions) 

• so that its actions may affect its future sensing (it’s structurally coupled to 
its environment (Maturana 1975, Maturana and Varela 1980)). 

The earlier features of an autonomous agent listed in the definition are typically 
accepted in the community of agent researchers. The final feature is needed to 
distinguish an autonomous agent from other kinds of software, like a check-
writing program that reads a personnel database once a week and produces a 
check for each employee. 
 
Why must an AGI system be an autonomous agent? In order for an AGI system 
to generalize its knowledge across different, and likely novel, domains, it will 
have to learn. Learning requires sensing, and often acting. An autonomous agent 
is a suitable vehicle for learning (Franklin 2005b), particularly for human-like 
learning (D'Mello et al 2006, Ramamurthy et al 2006). 

An Agent in its Environment 

So the picture I’m going to propose as the beginning of a suggested ontology for 
AGI research is developed from that of an agent that senses its environment and 
acts on it, over time, in pursuit of its own agenda.    
 
 
 
 
 
 

Figure 1. An Agent in its Environment 
 

In order to do all this, it must have built in sensors with which to sense, it must 
have effectors with which to act, and it must have primitive motivators (which I 
call drives), which motivate its actions.  Without motivation, the agent wouldn’t do 
anything.  Sensors, effectors and drives are primitives that must be built into, or 
evolved into, any agent. 

Cognition 

Next we replace the agent box in Figure 1 with a box called Cognition (see 
Figure 2).  
 
 
 
 
 
 
 

Figure 2. Cognition 



 
For any autonomous agent, including we humans, the one significant, and 
constantly recurring question is “what to do next” (Franklin 1995 Chapter 16). 
Cognition is the term we will use for this unending succession of deciding “what 
to do next,” in some sense the only question there is. We humans face that 
question every moment of our existence, as must our artificial autonomous 
agents. In humans, such selected actions include movements in the hands, 
turning of the head, saccades of the eyes, movements of the lips and tongue 
when speaking, and all sorts of other actions. 
 
Do note that this use of the term cognition is broader than the way the 
psychologists use it. When they talk about cognition, they normally don’t include 
perception or the process of actually taking the action.  
 
In what follows, we’ll break out modules and processes, one or two at a time, 
from the Cognition box, replacing it with a gray Rest of Cognition box, and talk 
about such modules and processes individually. Each such module or process 
will become part of the developing ontology, hopefully acting as a foundation for 
AGI. I know you’ll think this won’t sound anything like AGI. It’s far from general 
intelligence, but in my view this is where we have to start. This simple ontology 
will lead us to the beginnings of a foundational architecture for AGI. 

Perception 

Let’s first break out perception (see Figure 3), that is, the process of assigning of 
meaning to incoming sensory data. All this sensory data coming in must, 
somehow, be made meaningful to the agent itself. The agent must recognize 
individual objects, must classify them, and must note relations that exist between 
objects. The agent must make sense of the “scene” in front of it, perhaps 
including a visual scene, an auditory scene, an olfactory scene, etc. Perception is 
the process of agent making sense of its world. 
 
 
 
 
 
 
 

Figure 3. Perception 
 
And, what does meaning mean? How do you measure meaning? In my view, it’s 
best measured by how well the meaning assists the agent in deciding what to do 
next, in action selection.  This process of assignment of meaning can be bottom-
up, that is, drawn immediately from the sensation. It can also be top-down with 
older meanings coming back around in additional cycles and contributing to later 
meanings. Perception can also be top-down within a single cycle, in that it can 
look back more than once at the incoming sensory data. In the diagram of Figure 



3, we break out perception at one end, and have it construct a percept that sends 
the meaningful aspects of the scene forward. Top-down influences of both types 
may contribute to the percept, contributing to the sense of the scene. 

Procedural Memory 

Next we’re going to break out procedural memory (see Figure 4), by which I 
mean a repertoire of tasks (actions, procedures). Actions from this repertoire can 
be executed singly, in parallel, in series, and even in more complex streams of 
actions. In addition to the actions themselves, procedural memory might also 
keep track of the context in which the action may prove useful, as well as the 
expected result of performing the action. 
 
 
 
 
 
 
 

Figure 4. Procedural Memory 
 
But don’t confuse procedural memory, which has to do with WHAT to do next, 
with sensory-motor memory, which keeps track of HOW to do it.  How do I pick 
up a glass, turn it over and put it back?   Deciding to pick it up is one thing; 
actually doing it is something different. These two kinds of memory should 
require different mechanisms. 

Episodic Memory 

Next we’ll break out episodic memory (see Figure 5), that is, the content-
addressable, associative memory of events, of the what, the where and the when 
of the previous happening. These episodic memories may include semantic, 
locational, temporal, emotional, and causal aspects of the event. 
 
 
 
 
 
 

 

 

 

 
 

Figure 5. Episodic Memory  



 
Normally in humans, recall from episodic memory is accomplished by some kind 
of internal virtual reality.  We build mental images, using them to partially re-live 
the event. These images may be visual, auditory, or whatever. Might such virtual 
imagery recall be possible, or useful, in artificial agents, I don’t know. Animal 
cognition researchers often try to avoid controversy about animal consciousness 
by referring to “episodic-like” memory, defining it as the storing of the what, the 
when, and the where without any assumption of mental imaging (Clayton, 
Griffiths and Dickinson 2000, Ferkin et al in review). 
 
Episodic memories come in several varieties. Transient episodic memory has a 
decay rate measured in hours or perhaps a day (Conway 2001, Franklin et al 
2005). Long-term episodic memories have the potential of storing information 
indefinitely. Long-term declarative memory includes autobiographical memory, 
the memory of events as described above, and semantic memory, the memory 
for facts. 

Attention & Action Selection 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Attention and Action Selection 
 
In this section the gray “rest of cognition box” has disappeared, to be replaced by 
attention and action selection. Attention is the process that brings information 
built from perception and from episodic memory to consciousness. The global 
workspace theory of consciousness (Baars 1988, 1997, 2002) postulates a 
competition for consciousness (see Cognition as Filtering below). The 



competition aims at selecting the most relevant, the most important, the most 
urgent, or the most insistent information to become conscious. This is a 
functional view of consciousness, and takes no stand on the possibility of 
subjective machine consciousness in an AGI (Franklin 2003). 
 
The winning conscious information serves to recruit internal resources from 
which the next task is selected by the action selection mechanism. For an AGI 
such action selection must be quite sophisticated. In particular, it must be able to 
choose well between tasks serving different concurrent goals. It also must be 
able to bounce between seeking two such concurrent goals so as to take 
advantage of opportunities offered by the environment. 

Cognition as Filtering 

Following the cognitive cycle displayed in Figure 6 above, we can usefully think 
of each step as a filtering process.  An agent’s sensory receptors filter all of the 
possible sensory data available in the environment, letting through only that to 
which the agent’s sensors respond. Perception, as described above, is also a 
filtering process. Some sensory data coming in are ignored, while others are 
processed into possibly useful information, and become part of the percept that 
moves forward. The recall associations returned from a possibly huge episodic 
memory, accumulated over sometimes extremely long time periods, are also the 
result of a filtering process, What’s wanted is information relevant to, and 
important for, the agent’s current situation, including its goals. Hopefully, that’s 
what comes out of this filtering process so far. Attention is yet another filtering 
process that decides what part of the recent percepts and episodic recall to bring 
to consciousness. Again the criteria for this filtering include relevance, 
importance, urgency, and insistence. Procedural memory then uses the contents 
of consciousness, what comes to attention, to recruit only those actions that 
might be possible and useful in the current situation, yet another filtering process. 
Our final filtering process is action selection, the process of choosing what single 
action to perform next.  
 
The more complex the environment, and the more complex the agent, the more 
filtering is needed. One can think of the whole cognitive cycle, and even of 
cognition itself, as being essentially a complex, compound, filtering process. 

Learning 

Since, by its very nature, an AGI must learn, we next add several sorts of 
learning to the cognitive cycle (see Figure 7 below). Our assumption is that the 
agent learns that to which it attends (Baars 1988 section 5.5). Thus the learning 
arrows, in red, immerge from the Attention box. You’ll see three different kinds of 
learning denoted here, though there are others. There’s perceptual learning, the 
learning of new meanings, that is of objects, categories, relations, etc., or the 
reinforcement of existing meanings.  The episodic learning of events, the what, 
the where and the when, is denoted by its encoding. Finally, procedural learning 
improves skills and/or to learns new skills.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Learning 

A Foundational Architecture for AGI 

So, if we’re going to aim for an AGI, where do you look for it?  How should we go 
about trying to build an AGI agent?  In my view, if you want smart software, copy 
it after a human. That is, model the early AGI agents on what we know about 
human cognition. In the previous sections we’ve discussed modules and 
processes, derived from human cognition, that we believe must be included in 
any AGI architecture. Where do we go from there? One possibility is to dive right 
in and attempt to build a full-blown AGI directly. This strategy, while surely 
ambitious, may well succeed. A second possible strategy might be to construct a 
sequence of increasingly complex, intelligent, and general, artificial agents, 
culminating in a true AGI. This second strategy may prove to be even more likely 
to succeed. 
 
Here we suggest a means of enabling this second strategy by way of a common 
foundational architecture for each agent in the sequence. Such a foundational 
architecture would allow each successive agent to be built by adding higher-level 
cognitive processes to its predecessor. Let’s assume, as we must (Posner1982, 
Franklin 2000a, Weng 2004, Franklin 2005b, D'Mello et al 2006), that learning via 
a developmental period must be an integral part of the life cycle of any AGI.  The 
strategy suggested might allow what’s learned by one robot to be initially 
incorporated into its immediate successor.  
 
Any autonomous agent, and hence any AGI, must operate by means of a 
continuing iteration of cognitive cycles, the sense-cognize-act cycles described 

Encode 
Perceptual 

Learning 

Procedural 

Learning 



above. Each such cognitive cycle acts as a cognitive moment, an atom of 
cognition, in that each higher-level cognitive process is performed via the 
execution of a sequence of cognitive cycles. Higher-level cognitive processes are 
built of these cognitive cycles as cognitive atoms. Thus, a foundational 
architecture for AGI must implement a cognitive cycle to be continually iterated, 
and must provide mechanisms for building higher-level cognitive processes 
composed of sequences of these cognitive cycles. The LIDA architecture, to be 
described next, accomplishes both. 

The LIDA Architecture 

IDA denotes a conceptual and computational model of human cognition. LIDA, 
short for Learning IDA, denotes another such model with learning added. Let’s 
start with a brief description of IDA. 
 
The US Navy has about 350,000 sailors. As each sailor comes to the end of a 
certain tour of duty, he or she needs a new billet, a new job.  The Navy employs 
some 300 detailers, as they call them, personnel officers who assign these new 
billets. A detailer dialogs with sailors, usually over the telephone, but sometime 
by email. These detailers read personnel data from a sailor’s record in a Navy 
personnel database for items bearing on qualifications. They check job 
requisition lists in another Navy database to see what jobs will come available 
and when. They enforce the Navy’s policies and try to adhere to the sailors’ 
wishes, as well as looking to the needs of the particular job.  Eventually, the 
detailer offers one, two or, rarely, three jobs to the sailor. Some back and forth 
negotiations ensue, involving several communications. Hopefully the sailor 
agrees to takes a job offered by the detailer. If not, the detailer simply assigns 
one.  
 
IDA, an acronym for Intelligent Distribution1 Agent, is an autonomous software 
agent, which automates the tasks of the detailers as described in the previous 
paragraph (Franklin, Kelemen and McCauley 1998, McCauley and Franklin 
2002). Built with Navy funding, IDA does just what a human detailer does. In 
particular, she communicates with sailors in natural language, in English, though 
by email rather than telephone. The sailor writes anyway he or she wants to 
write. There’s no prescribed protocol or format, no form to fill out. IDA 
understands what the sailor writes in the sense of knowing how to pick out 
relevant and important pieces of information from the email message, and what 
to do with it. IDA is implemented, up and running, and tested to the Navy’s 
satisfaction.  
 
To accomplish the tasks of a human detailer, IDA employs a number of higher-
level cognitive processes. These include constraint satisfaction (Kelemen 
Franklin and Liang 2005), deliberation (Sloman 1999, Franklin 2000b), 

 
1 Distribution is the Navy’s name for the process of assigning new jobs to sailors 
at the end of a tour of duty. 



sophisticated action selection (Negatu and Franklin. 2002) and volition (Franklin 
2000b).  
 
Both in its cognitive cycle and its implementation of higher-level cognitive 
processes, IDA, and its learning extension LIDA, implement a number of mostly 
psychological theories of cognition. We’ll very briefly describe each, and its role 
in the LIDA architecture. 
 
Over the past couple of decades, research in AI, and more generally cognitive 
science, has moved towards situated or embodied cognition (Varela, Thompson 
and Roach 1991, Glenberg 1997). The idea is that cognition should be studied in 
the context of an autonomous agent situated within an environment. Being an 
autonomous software agent, IDA is embodied (Franklin 1997). Similarly, software 
agents, autonomous robots or AGI’s built on the foundation of a LIDA 
architecture would be embodied.  
 

 
 

Figure 8. Working Memory 
 

Barsalou, in his theory of perceptual symbol systems (1999), postulates that 
there are no amodal symbols involved in human cognition. Rather, all such 
information is represented by perceptual symbols. Put another way, all cognitive 
symbols are ultimately grounded in perception (Harnad 1990). The LIDA 
architecture represents perceptual entities, objects, categories, relations, etc., 
using nodes and links in a slipnet (Hofstadter and Mitchell 1995). These serve as 
perceptual symbols acting as the common currency for information throughout 
the various modules of the LIDA architecture. 
 
In cognitive psychology the term working memory refers to a theoretical 
framework specifying and describing structures and processes used for 



temporarily storing and manipulating information (Baddeley and Hitch 1974). 
Among these structures are the visuospacial sketchpad, the phonological loop, 
and a central executive responsible for the integration of information. More recent 
working memory structures include a consciousness mechanism (Baddeley 
1992) and the episodic buffer (Baddeley 2000) (see Figure 8). All of the various 
modules and processes working memory are implemented in the LIDA 
architecture, mostly in its perceptual module and its workspace (see below) 
(Baars and Franklin 2003).  
 
Glenberg’s theory (1997) stresses the importance of patterns of behavior to 
conceptualization and to understanding. For example, an object is understood via 
its affordances (Gibson 1979). In the LIDA architecture templates for such 
pattern of behavior are found in perceptual memory. Their instantiations as 
sequences of actions contribute to perceptual learning, including 
conceptualization, leading to further understanding.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Sloman’s Architecture 
 

The long-term working memory of Ericsson and Kinstch (1995) is incorporated 
into LIDA’s workspace (see below), in which local associations recalled from 
episodic memory are combined with percepts to produce higher-level perceptual 



structures. In an AGI this workspace would include the various working memory 
structures mentioned above. 

 
By far the single most significant influence on the LIDA architecture from 
cognitive psychology came from Baars’ global workspace theory (GWT) of 
consciousness and cognition (1988, 1997, 2002, Baars and Franklin 2003). GWT 
postulates attention, bringing important, relevant information to consciousness 
(the global workspace). Its contents are then broadcast to the entire system in 
order to recruit internal resources with which to deal appropriately with the 
current situation. The LIDA architecture implements precisely this function, as will 
become clear during the discussion of the LIDA cognitive cycle below. 
 
Finally, the LIDA architecture can be thought of a fleshing out and an 
implementation of Sloman’s architecture for a human-like agent (Sloman 1999). 
One can construct a concordance between most of the various modules and 
processes shown in Figure 9 and corresponding modules and processes of the 
LIDA cognitive as shown in Figure 10 below. Those that won’t fit in to such a 
concordance correspond to higher-level, multi-cyclic cognitive processes in LIDA 
(see Multi-cyclic Cognitive Processes below). Sloman’s meta-management 
process, that is, what the psychologist call metacognition, has not yet been 
designed for the LIDA model, but it certainly can be. 

The LIDA Cognitive Cycle 

LIDA operates as any autonomous must, with a continuously iterating cognitive 
cycle. Higher-level cognitive processes are composed of sequences of several or 
many of these cognitive cycles. Such higher-level cognitive processes might 
include deliberation, volition, problem solving, and metacognition. 
 
Let’s take a quick, guided tour through LIDA’s cognitive cycle, which is based on 
Figure 7 above. Figure 10 below will provide a useful map for our tour. Note, that 
this cognitive cycle is highly complex, and yet all of this must be accomplished in 
every cognitive moment. Computational resources may well prove an issue. 
 
Beginning at the upper left of Figure 10, we see stimuli coming in from both the 
internal and the external environment. Recall that, by definition, every 
autonomous agent is a part of its environment. LIDA is modeled after humans; 
we have to deal with both external and internal stimuli. Any AGI will likely have to 
also do so.  
 
In Sensory Memory (SM) one would find the sensors themselves and primitive, 
that is, built-in, feature detectors. It would also include early learned, and 
therefore not primitive, feature detectors that provide the beginnings of 
understanding of the stimuli. Note that information from SM goes both to 
Perceptual Associative Memory, which we’ll discuss next, and to the Effectors via 
the SMA (sensory-motor automatisms). In the later role, SM is crucially involved 
in quickly providing the kind of precise spatial, temporal, egocentric information 



that permit such actions as successfully hitting an oncoming fast ball, or even the 
grasping of a cup. Such SMA’s in humans operate on their own direct sensory-
motor cycles at about five times the rate of the larger LIDA cognitive cycle.  

 
Figure 10. The LIDA Cognitive Cycle 

 
From SM, information travels to Perceptual Associative Memory (PAM), which 
we implement as a slipnet (Hofstadter and Mitchell 1995). Here the next stage of 
constructing meanings occur, that is the recognition of further features, of 
objects, and of categories. Passing activation brings some nodes and links over 
threshold, and thus into the percept. 
 
 
The LIDA cognitive cycle includes two episodic memory modules, the short-term 
Transient Episodic Memory (TEM), and the potentially long-term Declarative 
Memory (DM) (Conway 2001, Franklin et al 2005). Recording such information 
as where I parked my car in the garage this morning, TEM encodings decay in 
humans within hours or a day. DM encodings only occur through offline 
consolidation from TEM. Though they can decay away, when sufficiently 
reinforced DM encodings can last a lifetime. Both episodic memories are 
computationally implemented using a modified sparse distributed memory 
(Kanerva 1988, Ramamurthy D'Mello and Franklin 2004, D'Mello, Ramamurthy 
and Franklin 2005). 
 



The percept produced by PAM (described two paragraphs above) is moved into 
the Workspace, an amalgam of the preconscious working memory buffers and 
long-term working memory (in Figure 10 the Workspace is split into two boxes). 
Here additional, more relative, less precise, scene understanding structures are 
built. As well as the current percept, the Workspace also contains previous 
percepts and recent local associations recalled from both TEM and DM, all in 
various stages of decaying away. These contents of the Workspace serve to cue 
TEM and DM for current local associations. An understanding of the current 
scene is produced in the Workspace using additional, quick, two-way 
communication, that is, including down-stream communication, with TEM, DM, 
PAM and even SM. 
 
Next, the Attention Codelets2, whose job it is to bring relevant and important 
information to consciousness, come into play. An attention codelet has its own 
special interests, to which it wishes to draw attention. Each attention codelet 
searches the workspace for items (objects, relations, situations) of interest, and 
creates coalitions3 of these items if it finds them.   
 
These coalitions move into the Global Workspace where there’s a competition for 
consciousness.  This competition constitutes the final filtering of input. The idea 
is to attend to filter most relevant, the most important, the most urgent, the most 
insistent aspects of the current situation.  Once the competition for 
consciousness is resolved, GWT call for a global broadcast of the contents of 
consciousness. 
 
Aside from learning, which we’ll discuss later, the major recipient of the global 
broadcast is Procedural Memory (PM), which we implement as a scheme net 
modeled after the schema mechanism (Drescher 1991). PM uses the contents of 
the global broadcast to pick out those possible actions that might be relevant to 
the current situation. Each scheme in PM is a template for an action together with 
its context and result. The schemes that might be relevant, that is, those whose 
context and/or results intersect with the contents of the global broadcast, 
including goals, instantiate themselves and bind their variables with information 
from the broadcast. 
 
These instantiated schemes then go to Action Selection (AS), which is 
implemented as a behavior net (Maes 1989, Negatu and Franklin. 2002), a very 
sophisticated kind of action selection mechanism. In AS, instantiated schemes 
compete to be the single action selected, possibly a compound of sub-actions in 

 
2 Taken from the Copycat Architecture (Hofstadter and Mitchell 1995),  “codelet” 
refers to a small, special-purpose piece of computer code, often running as a 
separate thread. They implement the processors of GWT (Baars 1988). There 
are many different varieties of codelet in the LIDA model. 
3 The term “coalition” comes from GWT, where it always refers to a coalition of 
processors. 



parallel. Over multiple cognitive cycles, AS may select a sequence of actions to 
accomplish a given goal. It might also bounce opportunistically between 
sequences of actions serving different goals. 
 
The single action chosen during a given cognitive cycle is sent, along with the 
object(s) upon which it is to act, to Sensory-Motor Memory (S-MM), which 
contains procedures for actually performing the selected action, the so called 
sensory-motor automatisms. Our representation for these sensory-motor 
automatisms is as yet undecided, but we’re leaning toward a net built from 
subsumption networks (Brooks 1991). 
 
In our tour through the LIDA cognitive cycle we postponed a discussion learning, 
which we’ll take up now. Our basic premise is that we learn that to which we 
attend (Baars 1988 pp 213-214). Thus learning occurs as a consequence of, or 
at least in conjunction with, the conscious broadcast from the Global Workspace. 
Learning is modulated by affect following an inverted U curve. Learning is 
strengthened as affect increases up to a point. After that the affect begins to 
interfere and the learning rate diminishes with further increases in affect 
(Belavkin 2001, Cochran, Lee and Chown 2006). 
 
The LIDA cognitive cycle includes four types of learning, three of which were 
discussed earlier in the chapter (D'Mello, Franklin, Ramamurthy, and Baars 
2006). The perceptual learning of object, categories, relations, etc., takes place 
in PAM (Franklin 2005b). Episodic learning of what, where and when are 
encoded in TEM, while procedural learning of tasks takes place in PM (D'Mello,. 
Ramamurthy, Negatu and Franklin 2006). The hitherto unmentioned form of 
learning is attentional learning, the learning of what to attend, which takes place 
in the Attention Codelets. We know little about attentional learning, which is an 
object of current research. 
 
Each of these types of learning has its selectionist and its instructionalist form 
(Edelman 1987). Selectionist learning reinforces existing memory traces 
positively or negatively. Instructionalist learning adds new entities to the various 
memories, often by altering or combining existing entities. 
 
Following our strategy, mentioned above, of producing smart software by copying 
humans, the LIDA cognitive cycle was modeled after what we hypothesize 
happens in humans (Baars and Franklin 2003, Franklin et al 2005). Though 
asynchronous, each cognitive cycle runs in about 200 milliseconds. But they can 
cascade, so a new cycle can begin while earlier cycles are completing. As a 
consequence of this cascading, the rate of this cognitive cycle processing is five 
to ten cycles per second. Though asynchronous, the seriality of consciousness 
must be preserved. Though none of it is conclusive, there considerable evidence 
from neuroscience suggestive or, or supportive of, these cognitive cycles in 
nervous systems (Lehmann, Ozaki and Pal 1987, Lehmann et al 1998, Halgren 
et al 2002, Freeman, Burke and Holmes. 2003). 



Multi-cyclic Cognitive Processes 

In the LIDA model cognitive cycles are the atoms out of which higher-level 
cognitive processes are built. Here we’ll briefly describe several of these higher-
level processes: deliberation, volition, atomization, non-routine problem solving, 
metacognition and self-awareness. Each of these is a multi-cyclic process that 
can be implemented over multiple cognitive cycles using the LIDA architecture as 
a foundation. Let’s take them up one at a time, beginning with deliberation. 
 
Deliberation refers to such activities as planning, deciding, scheduling, etc. that 
require one to consciously think about an issue. Suppose I want to drive from a 
new location in a city I know to the airport. It will be a route I’ve never taken, so I 
may imagine landmarks along the way, which turns to take and so, deliberate 
about how best to get there. When IDA thinks about whether she can get a sailor 
from a current job to a specific new job with leave time, training time, travel time 
and so forth all fitted in between, that’s deliberation. This higher-level deliberative 
process takes place in IDA (and LIDA) over multiple cognitive cycles using 
behavior streams instantiated from PM into the behavior net (AS) (Franklin 
2000b). 
 
As specified by GWT, conscious, volitional, decision-making, a kind of 
deliberation, is implemented via William James’ ideomotor theory (James1890, 
Baars 1988, Franklin 2000b). Once again, volition uses an instantiated behavior 
stream over several cognitive cycles. For example, suppose that, being thirsty 
one morning, I consciously considered the possibilities of coffee, tea, and orange 
juice, weighing the advantages and disadvantages of each, perhaps by arguing 
with myself. My eventually deciding to drink tea is a volitional decision, as 
opposed to my typing of this phrase, which was not consciously decided on 
ahead of time. IDA decides volitionally on which jobs to offer sailors. 

How do we get from consciously going through all the steps of learning to drive 
an automobile, to the effortless, frequently unconscious, automatic actions of an 
experienced driver? We call this higher-level cognitive process automization, and 
implement it in the LIDA model via pandemonium theory (Jackson 1987, Negatu, 
McCauley and Franklin in review). Once again automization is accomplished 
over multiple cognitive cycles using the LIDA architecture as a framework. 
 
In the LIDA architecture Procedural Memory (PM) consists of templates for 
actions, including their contexts and expected results. Actions are selected from 
among action templates instantiated in response to a conscious broadcast. What 
if PM doesn’t contain any action templates to be recruited to deal with the current 
situation? In this case non-routine problem solving would be required. The LIDA 
architecture serves as a foundation for an, as yet unpublished, non-routine 
problem solving algorithm based on an extension of partial order planning 
(McAllester and Rosenblitt. 1991). 
 



Defined by psychologists as thinking about thinking, metacognition4 has, in 
recent years become of interest to AI researchers (Minsky1985, Sloman1999, 
Cox 2005). There’s even a website for Metacognition in Computation 
(www.cs.umd.edu/~anderson/MIC). Metacognition is often used to update a 
strategy. Suppose I think that I was too hard on my daughter in our interaction 
last night, and decide that next time I want to be more empathetic with her. That’s 
an example of metacognition. After early, misguided attempts (see for example, 
Zhang, Dasgupta and Franklin 1998), we now know how to build metacognition 
as a collection of higher-level cognitive processes on a foundation of the LIDA 
architecture and its cognitive cycle. This work is currently in an early stage and 
not yet published. 
 

 
 

Figure 11. Various Selves 
Philosophers, psychologists and neuroscientists have defined and studied a 
number of varieties of selves (Damasio 1999, Strawson 1999, Gallagher 2000, 
Baars, Ramsoy and Laureys 2003, Goldberg, Harel, and Malach 2006) (see 
Figure 11) Finally, it’s possible to implement several of the various varieties of 
self as higher-level cognitive processes on a foundation of the LIDA architecture. 
Again, this work has currently just begun and is as yet unpublished. 
 
All of these and many, many more multi-cyclic processes can be built using the 
LIDA architecture’s cognitive cycles as cognitive atoms. It’s this possibility that 
supports the strategy of producing an AGI as a sequence of ever more intelligent, 
adaptable and versatile autonomous agents each containing the previous, and 
each based on the LIDA architecture. 

 
4 Sloman calls it meta-management (see Figure 9). 



Lessons for Building an AGI 

Suppose we accept the strategy of building an AGI as the culmination of an 
increasing sequence of ever more intelligent and adaptable AGI agents, each 
built on the foundation of the LIDA architecture with its cognitive cycles as atoms. 
What general lessons can we learn as a result? Here are a few. 
 
We must choose a suitable domain for our agent. A domain? A domain for an 
AGI agent? I thought an AGI was supposed to generalize. It certainly must 
generalize, but it’s still an autonomous agent. Every such agent must come with 
built-in sensors, motivators, and effectors.  That means the agent must have an 
environment on which to sense and act, that is, a domain. What is needed is a 
well-chosen domain from which it can generalize.  This would entail a broad 
enough domain with a number of sub-domains from which it can generalize. The 
successor of each agent in the sequence may be situated in a more inclusive 
domain, and may be provided with additional sensors, motivators and effectors. 
 
In my view, an AGI agent is much too much to handcraft. By definition, it’s 
supposed to generalize, that is, to add to its store of knowledge and skill. 
Therefore it must learn. And, how shall it learn?  At least at the start, I suggest 
that it learn like a human, that we build-in human-like learning capabilities. Later 
on we, or it, may find better ways of learning. Let’s note some principles of 
human learning that can be adapted to human-like learning in an AGI agent, and 
in its predecessors.  
 
There’s no learning from scratch, from a blank slate. For example, human infants 
come equipped to recognize faces. The practice of the more sophisticated 
machine learning research community is to build in whatever you can build in. 
This same principle should be followed when attempting to build an AGI. 
Learning, yes. Learning from scratch, no. 
 
With trivial exceptions, we learn that to which we attend, and only that. The 
implication is that an AGI must come equipped with an attention mechanism, with 
some means of attending to relevant information. This implies the need for some 
form of functional consciousness, but not necessarily subjective consciousness 
(Franklin 2003). 
 
Human learning is incremental and continual. It occurs at every moment, that is, 
during every cognitive cycle. And, it’s unsupervised. Supervised machine 
learning typically involves a training period during which the agent is taught, and 
after which it no longer learns. In contrast, an AGI agent will need to learn 
incrementally and continually as human’s do. Though such an agent may go 
through a developmental period of particularly intense learning, it must also be a 
“lifelong” learner.  
 
Humans learn by trial and error, that is, by what we in AI call a generate-and-test 
process. The LIDA model hypothesizes that we learn potential new objects in 



PAM quickly and on the flimsiest of excuses (Franklin, S. 2005b). This is the 
process of generation. New objects that are reinforced by being attended to 
survive, while others decay away. This is the testing process. All this is done 
incrementally and continually, that is, in every cognitive cycle. And, this 
perceptual learning by generate-and-test is not restricted to new objects, but 
applies to categories, relations, etc. Similar processes are in place for episodic 
and procedural learning as well. I suggest that such generate-and-test learning 
will be needed in AGI agents as well. 
 
According to the LIDA model, much if not all of human memory is content 
addressable. We don’t access an item in memory by knowing its address or 
index. Rather we access it using a portion of its content as a cue. Sensory 
memory is cued by the incoming content of the sensors. In PAM detected 
features allow us to access objects, categories, relations, etc. The contents of 
LIDA’s workspace cue both episodic memories, TEM and DM, recalling prior 
events associated with the cue. Action templates in PM are cued by the contents 
of the conscious broadcast. Such content addressable memories must surely be 
a part of any AGI agent. 
 
Above we distinguished and spoke of selectionlist and instructionalist learning 
within the LIDA architecture. I suggest that an AGI agent must also learn in each 
of these learning methods in each of its learning modes, perceptual, episodic, 
and procedural. In summary, the LIDA model suggests that an AGI agent must 
initially be copied after humans, must have a rich and broad domain, must 
employ many multi-cyclic processes, and must be capable of using both learning 
methods in the several different modes of learning.  

Questions for AGI Researchers  

 
Must an AGI agent be functionally conscious?  As noted above, the LIDA model 
suggests an affirmative answer. Though functional consciousness as derived 
from GWT may not prove necessary, I suspect some form of attentional 
mechanism will. 
 
Must an AGI agent be phenomenally conscious?  That is, must it have subjective 
experiences as we do?  I think not. I suspect that we may be able to build an AGI 
agent that’s not phenomenally conscious. However, subjective consciousness 
may prove necessary to deal with the problem of distinguishing perceived motion 
due to changes in the environment from perceived motion due to movement of 
the agent’s sensors (Merker. 2005, Franklin 2005c). Subjective consciousness 
provides an agent with a coherent, stable internal platform from which to perceive 
and act on its world. We may be pushed into trying to build AGI agents that are 
phenomenally conscious. 
 
Must an AGI agent be capable of imagination? That is, must it be able to produce 
an internal virtual reality?  Humans often deliberate in this way. An AGI agent 



must certainly be capable of deliberation. However, deliberation has been shown 
to be implementable without subjective consciousness (Franklin 2000b, 2003). 
 
Must an AGI agent come equipped with feelings? In humans, feelings include, for 
example, thirst and pain, as well as emotions5 such as fear or shame (Johnston 
1999). In humans and animals, feelings implement motivation. It’s feelings that 
drive us to do what we do (Franklin and McCauley 2004, Franklin and 
Ramamurthy 2006). We think we select actions rationally, but such decisions, 
though surely influenced by facts and expected consequences, are ultimately in 
the service of feelings. And, feelings modulate our learning by increasing affect, 
as discussed above (Franklin and McCauley 2004). Must an AGI agent have 
artificial feelings to serve these purposes?  I think not.  There are other ways to 
modulate learning; there are other ways to implement drives as primitive 
motivators.  Feelings have proved useful evolutionarily in complex dynamic 
environments because they provide a lot of flexibility in learning and action 
selection. They may provide a good solution to these problems in AGI agents, or 
we may find a better way.  
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