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CHAPTER -

Computational Models of Consciousness:
A Taxonomy and Some Examples

Ron Sun and Stan Franklin

Abstract

This chapter aims to provide an overview of
existing computational (mechanistic) mod-
els of cognition in relation to the study of
consciousness, on the basis of psychologi-
cal and philosophical theories and data. It
examines various mechanistic explanations
of consciousness in existing computational
cognitive models. Serving as an example for
the discussions, a computational model of
the conscious/unconscious interaction, uti-
lizing the representational difference expla-
nation of consciousness, is described briefly.
As a further example, a software agent
model that captures another explanation
of consciousness (the access explanation of
consciousness) is also described. The discus-
sions serve to highlight various possibilities
in developing computational models of con-
sciousness and in providing computational
explanations of conscious and unconscious
cognitive processes.

Introduction

In this chapter, we aim to present a short sur-
vey and a brief evaluation of existing compu-
tational (mechanistic) models of cognition
in relation to the study of consciousness.
The survey focuses on their explanations
of the difference between conscious and
unconscious cognitive processes on the basis
of psychological and philosophical theo-
ries and data, as well as potential practical
applications.

Given the plethora of models, theories,
and data, we try to provide in this chapter an
overall (and thus necessarily sketchy) exam-
ination of computational models of con-
sciousness in relation to the available psy-
chological data and theories, as well as the
existing philosophical accounts. We come to
some tentative conclusions as to what a plau-
sible computational account should be like,
synthesizing various operationalized psycho-
logical notions related to consciousness.
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We begin by examining some foun-
dational issues concerning computational
approaches toward consciousness. Then, var-
ious existing models and their explanations
of the conscious/unconscious distinction are
presented. After examining a particular
model embodying a two-system approach,
we look at one embodying a unified (one-
system) approach and then at a few addi-
tional models.

Computational Explanations
of Consciousness

Work in the area of computational model-
ing of consciousness generally assumes the
sufficiency and the necessity of mechanis-
tic explanations. By mechanistic explana-
tion, we mean any concrete computational
processes, in the broadest sense of the term
“computation.” In general, computation is
a broad term that can be used to denote
any process that can be realized on generic
computing devices, such as Turing machines
(or even beyond if there is such a possi-
bility). Thus, mechanistic explanations may
utilize, in addition to standard computa-
tional notions, a variety of other concep-
tual constructs ranging, for example, from
chaotic dynamics (Freeman, 1995), to “Dar-
winian” competition (Edelman, 1989), and
to quantum mechanics (Penrose, 1994). (We
leave out the issue of complexity for now.)

In terms of the sufficiency of mechanistic
explanations, a general working hypothesis is
succinctly expressed by the following state-
ment (Jackendoff, 1987):

Hypothesis of computational sufficiency:
every phenomenological distinction is
caused by/supported by/projected from a
corresponding computational distinction.

For the lack of a clearly better alterna-
tive, this hypothesis remains a viable work-
ing hypothesis in the area of computational
models of consciousness, despite various
criticisms (e.g., Damasio, 1994; Edelman,
1989; Freeman, 1995; Penrose, 1994; Searle,
1980).

On the other hand, the necessity of mech-
anistic explanations, according to the fore-
going definition of mechanistic processes,
should be intuitively obvious to anyone who
is not a dualist. If one accepts the universal-
ity of computation, then computation, in its
broadest sense, can be expected to include
the necessary conditions for consciousness.

On the basis of such intuition, we need
to provide an explanation of the compu-
tational/mechanistic basis of consciousness
that answers the following questions. What
kind of mechanism leads to conscious pro-
cesses, and what kind of mechanism leads
to unconscious processes? What is the func-
tional role of conscious processes (Baars,
1988, 2002; Sun, 1999a, b)? What is the
functional role of unconscious processes?
There have been many such explanations in
computational or mechanistic terms. These
computational or mechanistic explanations
are highly relevant to the science of con-
sciousness as they provide useful theoretical
frameworks for further empirical work.

Another issue we need to address before
we move on to details of computational
work is the relation between biological/phy-
siological models and computational mod-
els in general. The problem with biologi-
cally centered studies of consciousness in
general is that the gap between phenomenol-
ogy and physiology/biology is so great that
something else may be needed to bridge it.
Otherwise, if we rush directly into com-
plex neurophysiological thickets (Edelman,
1989; Crick & Koch, 1990; Damasio et al.,
1990; LeDoux, 1992,), we may lose sight
of the forests. Computation, in its broad-
est sense, can serve to bridge the gap. It
provides an intermediate level of explana-
tion in terms of processes, mechanisms, and
functions and helps determine how various
aspects of conscious and unconscious pro-
cesses should figure into the architecture of
the mind (Anderson & Lebiere, 1998; Sun,
2002). It is possible that an intermediate
level between phenomenology and physi-
ology/neurobiology might be more apt to
capture fundamental characteristics of con-
sciousness (Coward & Sun, 2004). This no-
tion of an intermediate level of explanation

November 6, 2006

16:21



P1:JzG
0521857430c07

CUFXo49/Zelazo 052185743 0

printer: cupusbw

November 6, 2006

COMPUTATIONAL MODELS OF CONSCIOUSNESS: A TAXONOMY AND SOME EXAMPLES 153

has been variously expounded recently; for
example, in terms of virtual machines by
Sloman and Chrisley (2003).

Different Computational Accounts
of Consciousness

Existing computational explanations of the
conscious/unconscious distinction may be
categorized based on the following differ-
ent emphases: (1) differences in knowledge
organization (e.g., the SN+PS view, to be
detailed later), (2) differences in knowledge-
processing mechanisms (e.g., the PS+SN
view), (3) differences in knowledge content
(e.g., the episode+tactivation view), (4) dif-
ferences in knowledge representation (e.g.,
the localist+distributed view), or (5) dif-
ferent processing modes of the same sys-
tem (e.g., the attractor view or the threshold
view).

Contrary to some critics, the debate
among these differing views is not analogous
to a debate between algebraists and geome-
ters in physics (which would be irrelevant).
It is more analogous to the wave vs. parti-
cle debate in physics concerning the nature
of light, which was truly substantive. Let us
discuss some of the better known views con-
cerning computational accounts of the con-
scious/unconscious distinction one by one.

First of all, some explanations are based
on recognizing that there are two sepa-
rate systems in the mind. The difference
between the two systems can be explained
in terms of differences in either knowledge
organization, knowledge-processing mech-
anisms, knowledge content, or knowledge
representation:

e The SN+PS view: an instance of the expla-
nations based on differences in knowl-
edge organization. As originally proposed
by Anderson (1983) in his ACT* model,
there are two types of knowledge: Declar-
ative knowledge is represented by seman-
tic networks (SN), and it is consciously
accessible, whereas procedural knowl-
edge is represented by rules in a produc-
tion system (PS), and it is inaccessible.

The difference lies in the two different
ways of organizing knowledge — whether
in an action-centered way (procedural
knowledge) or in an action-independent
way (declarative knowledge). Computa-
tionally, both types of knowledge are
represented symbolically (using either
symbolic semantic networks or symbolic
production rules).! The semantic net-
works use parallel spreading activation
(Collins & Loftus, 1975) to activate rel-
evant nodes, and the production rules
compete for control through parallel
matching and firing. The models embody-
ing this view have been used for model-
ing a variety of psychological tasks, espe-
cially skill learning tasks (Anderson, 1983,
Anderson & Lebiere, 1998).

The PS+SN view: an instance of the
explanations based on differences in
knowledge-processing mechanisms. As
proposed by Hunt and Lansman (1986),
the “deliberate” computational process of
production matching and firing in a pro-
duction system (PS), which is serial in
this case, is assumed to be a conscious
process, whereas the spreading activation
computation (Collins & Loftus, 1975) in
semantic networks (SN), which is mas-
sively parallel, is assumed to be an uncon-
scious process. The model based on this
view has been used to model controlled
and automatic processing data in the
attention-performance literature (Hunt
& Lansman, 1986). Note that this view is
the exact opposite of the view advocated
by Anderson (1983), in terms of the roles
of the two computational mechanisms
involved. Note also that the emphasis in
this view is on the processing difference
of the two mechanisms, serial vs. parallel,
and not on knowledge organization.

The algorithm + instance view: another
instance of the explanations based on dif-
ferences in knowledge-processing mech-
anisms. As proposed by Logan (1988)
and also by Stanley et al. (1989), the
computation involved in retrieval and
use of instances of past experience is
considered to be unconscious (Stanley
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et al., 1989) or automatic (Logan 1988),
whereas the use of “algorithms” involves
conscious awareness. Here the term
“algorithm” is not clearly defined and
apparently refers to computation more
complex than instance retrieval/use.
Computationally, it was suggested that
the use of an algorithm is under tight
control and carried out in a serial,
step-by-step way, whereas instances can
be retrieved in parallel and effortlessly
(Logan, 1988). The emphasis here is
again on the differences in process-
ing mechanisms. This view is also sim-
ilar to the view advocated by Neal
and Hesketh (1997), which emphasizes
the unconscious influence of what they
called episodic memory. Note that the
views by Logan (1988), Stanley et al.
(1989), and Neal and Hesketh (1997) are
the exact opposite of the view advo-
cated by Anderson (1983) and Bower
(1996), in which instances/episodes are
consciously accessed rather than uncon-
sciously accessed.

The episode+activation view: an instance
of the explanations based on differences
in knowledge content. As proposed by
Bower (1996), unconscious processes are
based on activation propagation through
strengths or weights (e.g., in a connec-
tionist fashion) between different nodes
representing perceptual or conceptual
primitives, whereas conscious processes
are based on explicit episodic memory
of past episodes. What is emphasized
in this view is the rich spatial-temporal
context in episodic memory (i.e., the ad
hoc associations with contextual infor-
mation, acquired on an one-shot basis),
which is termed type-z associations as
opposed to regular type-1 associations
(which are based on semantic related-
ness). This emphasis somewhat distin-
guishes this view from other views con-
cerning instances/episodes (Logan, 1988;
Neal & Hesketh, 1997; Stanley et al.
1989).> The reliance on memory of spe-
cific events in this view bears some resem-
blance to some neurobiologically moti-

THE CAMBRIDGE HANDBOOK OF CONSCIOUSNESS

vated views that rely on the interplay
of various memory systems, such as that
advocated by Taylor (1997) and McClel-
land et al. (1993).

e The localist+distributed representation
view: an instance of the explanations
based on differences in knowledge rep-
resentation. As proposed in Sun (1994,
2002), different representational forms
used in different components may be
used to explain the qualitative difference
between conscious and unconscious
processes. One type of representation is
symbolic or localist, in which one distinct
entity (e.g, a node in a connectionist
model) represents a concept. The other
type of representation is distributed, in
which a non-exclusive set of entities
(e.g., a set of nodes in a connectionist
model) are used for representing one
concept, and the representations of
different concepts overlap each other;
in other words, a concept is represented
as a pattern of activations over a set of
entities (e.g., a set of nodes). Conceptual
structures (e.g., rules) can be imple-
mented in the localist/symbolic system
in a straightforward way by connections
between relevant entities. In distributed
representations, such structures (includ-
ing rules) are diffusely duplicated in a
way consistent with the meanings of the
structures (Sun, 1994), which captures
unconscious performance. There may
be various connections between corre-
sponding representations across the two
systems. (A system embodying this view,

CLARION, is described later.)

In contrast to these two-systems views,
there exist some theoretical views that insist
on the unitary nature of the conscious and
the unconscious. That is, they hold that con-
scious and unconscious processes are differ-
ent manifestations of the same underlying
system. The difference between conscious
and unconscious processes lies in the differ-
ent processing modes for conscious versus
unconscious information within the same
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system. There are several possibilities in this
regard:

* The threshold view: As proposed by var-
ious researchers, including Bowers et al.
(1990), the difference between con-
scious and unconscious processes can be
explained by the difference between acti-
vations of mental representations above
a certain threshold and activations of
such representations below that thresh-
old. When activations reach the threshold
level, an individual becomes aware of the
content of the activated representations;
otherwise, although the activated repre-
sentations may influence behavior, they
will not be accessible consciously.

e The chunking view: As in the mod-
els described by Servan-Schreiber and
Anderson (1987) and by Rosenbloom
et al. (1993), a chunk is considered a uni-
tary representation and its internal work-
ing is oblique (although its input/output
are accessible). A chunk can be a pro-
duction rule (as in Rosenbloom et al.,
1993) or a short sequence of perceptual-
motor elements (as in Servan-Schreiber
& Anderson, 1987). Because of the lack
of transparency of the internal working
of a chunk, it is equated with implicit
learning (Servan-Schreiber & Anderson,
1987) or automaticity (Rosenbloom et al.,
1993). According to this view, the differ-
ence between conscious and unconscious
processes is the difference between using
multiple (simple) chunks (involving some
consciousness) and using one (complex)
chunk (involving no consciousness).

e The attractor view: As suggested by the
model of Mathis and Mozer (1996), being
in a stable attractor of a dynamic system
(a neural network in particular) leads to
consciousness. The distinction between
conscious and unconscious processes is
reduced to the distinction of being in a
stable attractor and being in a transient
state. O'Brien and Opie (1998) proposed
an essentially similar view. This view may
be generalized to a general coherence
view — the emphasis may be placed on the
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role of internal consistency in producing
consciousness. There has been support
for this possibility from neuroscience, for
example, in terms of a coherent “thalamo-
cortical core” (Edelman & Tononi, 2000).

e The access view: As suggested by Baars
(1988), consciousness is believed to help
mobilize and integrate mental functions
that are otherwise disparate and inde-
pendent. Thus, consciousness is aimed at
solving the relevance problem — finding
the exact internal resources needed to
deal with the current situation. Some evi-
dence has been accumulated for this view
(Baars, 2002). A computational imple-
mentation of Baars’ theory in the form
of IDA (a running software agent system;
Franklin et al., 1998) is described in detail
later. See also Coward and Sun (2004).

The coexistence of these various views
of consciousness seems quite analogous to
the parable of the Blind Men and the Ele-
phant. Each of them captures some aspect of
the truth about consciousness, but the por-
tion of the truth captured is limited by the
view itself. None seems to capture the whole
picture.

In the next two sections, we look into
some details of two representative compu-
tational models, exemplifying either two-
system or one-system views. The models
illustrate what a plausible computational
model of consciousness should be like, syn-
thesizing various psychological notions and
relating to various available psychological
theories.

A Model Adopting the
Representational Difference View

Let us look into the representational dif-
ference view as embodied in the cogni-
tive architecture CrarION (which stands for
Connectionist Learning with Rule Induction
ON-line; Sun1997,2002,2003), as an exam-
ple of the two-system views for explaining
consciousness.
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Top Level

explicit representation

explicit knowledge

explicit learning process

implicit representation
implicit knowledge

implicit learning process

Bottom Level

Figure 7.1. The CLARION model.

The important premises of subsequent
discussions are the direct accessibility of con-
scious processes and the direct inaccessibility
of unconscious processes. Conscious pro-
cesses should be directly accessible — that
is, directly verbally expressible — without
involving intermediate interpretive or trans-
formational steps, which is a requirement
prescribed and/or accepted by many the-
oreticians (see, e.g., Clark, 1992; Hadley,
1995).3 Unconscious processes should be,
in contrast, inaccessible directly (but they
might be accessed indirectly through some

interpretive processes), thus exhibiting dif-
ferent psychological properties (see, e.g.,
Berry & Broadbent, 1988; Reber, 1989; more
discussions later).

An example model in this regard is
CrarioN, which is a two-level model that
uses the localist and distributed represen-
tations in the two levels, respectively, and
learns using two different methods in the
two levels, respectively. In developing the
model, four criteria were hypothesized (see
Sun, 1994), on the basis of the aforemen-
tioned considerations: (1) direct accessibility
of conscious processes; (2) direct inaccessi-
bility of unconscious processes; and further-
more, (3) linkages from localist concepts to
distributed features: once a localist concept
is activated, its corresponding distributed
representations (features) are also activated,
as assumed in most cognitive models, rang-
ing from Tversky (1977) to Sun (1995);*
and (4) linkages from distributed features
to localist concepts: under appropriate cir-
cumstances, once some or most of the dis-
tributed features of a concept are activated,
the localist concept itself can be activated to
“cover” these features (roughly correspond-
ing to categorization; Smith & Medin, 1981).

The direct inaccessibility of unconscious
knowledge can be best captured by a “sub-
symbolic” distributed representation such as
that provided by a backpropagation network
(Rumelhart et al., 1986), because represen-
tational units in a distributed representation

Dimensions bottom

top

Cognitive phenomena | implicit learning
implicit memory
automatic processing
intuition

Source of knowledge trial-and-error

Representation distributed (micro)features
Operation similarity-based
Characteristics more context sensitive, fuzzy

less selective

more complex

assimilation of explicit knowledge | extraction from the bottom level

explicit learning
explicit memory
controlled processing
explicit reasoning

external sources

localist conceptual units
explicit symbol manipulation
more crisp, precise

more selective

simpler

Figure 7.2. Comparisons of the two levels of the CLARION architecture.
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ACS NACS
action—centered non-action—centered
explicit representation explicit representation
action—centered implicit non—action—centered —

representation

implicit representation

=1

1

T

goal structure

.

| reinforcement

drives

| goal setting I

filtering
selection

MS

regulation

MCS

Figure 7.3. The implementation of CLARION. ACS denotes the action-centered subsystem, NACS
the non-action-centered subsystem, MS the motivational subsystem, and MCS the metacognitive
subsystem. The top level contains localist encoding of concepts and rules. The bottom level contains
multiple (modular) connectionist networks for capturing unconscious processes. The interaction of
the two levels and the information flows are indicated with arrows.

are capable of accomplishing tasks but
are generally uninterpretable directly (see
Rumelhart et al., 1986; Sun, 1994). In con-
trast, conscious knowledge can be cap-
tured in computational modeling by a sym-
bolic or localist representation (Clark &
Karmiloff-Smith, 1993; Sun & Bookman
1994), in which each unit has a clear concep-
tual meaning/interpretation (i.e., a semantic
label). This captures the property of con-
scious processes being directly accessible and
manipulable (Smolensky, 1988; Sun, 1994).
This difference in representation leads to a
two-level structure whereby each level uses
one type of representation (Sun, 1994, 1995,
1997; Sun et al., 1996, 1998, 2001). The bot-
tom level is based on distributed represen-
tation, whereas the top level is based on
localist/symbolic representation. For learn-

ing, the bottom level uses gradual weight
tuning, whereas the top level uses explicit,
one-shot hypothesis testing learning, in cor-
respondence with the representational char-
acteristics of the two levels. There are var-
ious connections across the two levels for
exerting mutual influences. See Figure 7.1
for an abstract sketch of the model. The dif-
ferent characteristics of the two levels are
summarized in Figure 7.2.

Let us look into some implementational
details of Crarion. Note that the details
of the model have been described exten-
sively in a series of previous papers, includ-
ing Sun (1997, 2002, 2003), Sun and Peter-
son (1998), and Sun et al. (1998, 2001).
It has a dual representational structure —
implicit and explicit representations being in
two separate “levels” (Hadley, 1995; Seger,
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1994). Essentially it is a dual-process the-
ory of mind (Chaiken & Trope, 1999). It
also consists of a number of functional sub-
systems, including the action-centered sub-
system, the non-action-centered subsystem,
the metacognitive subsystem, and the moti-
vational subsystem (see Figure 7.3).

Let us first focus on the action-centered
subsystem of CrARION. In this subsystem, the
two levels interact by cooperating in actions,
through a combination of the action rec-
ommendations from the two levels, respec-
tively, as well as cooperating in learning
through a bottom-up and a top-down pro-
cess (to be discussed below). Actions and
learning of the action-centered subsystem
may be described as follows:

1. Observe the current state x.

>. Compute in the bottom level the “values”
of x associated with each of all the possi-
ble actions a;’s: Q(x, a,), Q(x, a.), ... ... ,
Q(x, a,) (to be explained below).

3. Find out all the possible actions (b,,
b,,...., by) at the top level, based on the
input x (sent up from the bottom level)
and the rules in place.

4. Compare or combine the values of the
a;s with those of bjs (sent down from
the top level), and choose an appropriate
action b.

5. Perform the action b, and observe the next
state y and (possibly) the reinforcement r.

6. Update Q-values at the bottom level
in accordance with the Q-Learning-
Backpropagation  algorithm  (to  be
explained later).

7. Update the rule network at the top level
using the Rule-Extraction-Refinement algo-
rithm (to be explained later).

8. Go back to Step 1.

In the bottom level of the action-centered
subsystem, implicit reactive routines are
learned: A Q-value is an evaluation of the
“quality” of an action in a given state: Q(x,
a) indicates how desirable action a is in state
x (which consists of some sensory input).
The agent may choose an action in any state
based on Q-values (for example, by choos-

ing the action with the highest Q-value). To
acquire the Q-values, one may use the Q-
learning algorithm (Watkins 1989), a rein-
forcement learning algorithm. It basically
compares the values of successive actions
and adjusts an evaluation function on that
basis. It thereby develops reactive sequential
behaviors.

The bottom level of the action-centered
subsystem is modular; that is, a number of
small neural networks coexist, each of which
is adapted to specific modalities, tasks, or
groups of input stimuli. This coincides with
the modularity claim (Baars, 1988; Cosmides
& Tooby, 1994; Edelman, 1987; Fodor, 1983;
Hirschfield & Gelman, 1994; Karmiloff-
Smith, 1986) that much processing in the
human mind is done by limited, encapsu-
lated (to some extent), specialized proces-
sors that are highly effcient. Some of these
modules are formed evolutionarily; that is,
given a priori to agents, reflecting their hard-
wired instincts and propensities (Hirsch-
field & Gelman, 1994). Some of them can be
learned through interacting with the world
(computationally through various decompo-
sition methods; e.g., Sun & Peterson, 1999).

In the top level of the action-centered
subsystem, explicit conceptual knowledge
is captured in the form of rules. Symbolic/
localist representations are used. See Sun
(2003) for further details of encoding (they
are not directly relevant here).

Humans are clearly able to learn implicit
knowledge through trial and error, without
necessarily utilizing a priori explicit knowl-
edge (Seger, 1994). On top of that, explicit
knowledge can be acquired, also from ongo-
ing experience in the world, and possibly th-
rough the mediation of implicit knowledge
(i.e,, bottom-up learning; see Karmilof-
Smith, 1986; Stanley et al., 1989; Sun, 1997,
2002; Willingham et al., 1989). The basic
process of bottom-up learning is as follows
(Sun, 2002). If an action decided by the
bottom level is successful, then the agent
extracts a rule that corresponds to the action
selected by the bottom level and adds the
rule to the top level. Then, in subsequent
interaction with the world, the agent ver-
ifies the extracted rule by considering the
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outcome of applying the rule: If the outcome
is not successful, then the rule should be
made more specific and exclusive of the cur-
rent case, and if the outcome is successful,
the agent may try to generalize the rule to
make it more universal (e.g., Michalski,
1983). The details of the bottom-up learning
algorithm (the Rule-Extraction-Refinement
algorithm) can be found in Sun and Peter-
son (1998). After rules have been learned, a
variety of explicit reasoning methods may be
used. Learning explicit conceptual represen-
tation at the top level can also be useful in
enhancing learning of implicit reactive rou-
tines (reinforcement learning) at the bottom
level.

Although CrARION can learn even when
no a priori or externally provided knowl-
edge is available, it can make use of it when
such knowledge is available (cf. Anderson,
1983; Schneider & Oliver, 1991). To deal
with instructed learning, externally provided
knowledge (in the forms of explicit concep-
tual structures, such as rules, plans, routines,
categories, and so on) should (1) be com-
bined with autonomously generated concep-
tual structures at the top level (i.e., internal-
ization) and (2) be assimilated into implicit
reactive routines at the bottom level (i.e.,
assimilation). This process is known as top-
down learning. See Sun (2003) for further
details.

The non-action-centered subsystem rep-
resents general knowledge about the world,
which is equivalent to the notion of seman-
tic memory (as in, e.g., Quillian, 1968). It
may be used for performing various kinds
of retrievals and inferences. It is under the
control of the action-centered subsystem
(through the actions of the action-centered
subsystem). At the bottom level, associa-
tive memory networks encode non-action-
centered implicit knowledge. Associations
are formed by mapping an input to an out-
put. The regular backpropagation learning
algorithm can be used to establish such asso-
ciations between pairs of input and output
(Rumelhart et al., 1986).

On the other hand, at the top level of
the non-action-centered subsystem, a gen-
eral knowledge store encodes explicit non-

action-centered knowledge (Sun, 1994). In
this network, chunks are specified through
dimensional values. A node is set up at the
top level to represent a chunk. The chunk
node (a symbolic representation) connects
to its corresponding features (dimension-
value pairs) represented as nodes in the
bottom level (which form a distributed
representation). Additionally, links between
chunks at the top level encode explicit asso-
ciations between pairs of chunks, known as
associative rules. Explicit associative rules
may be formed (i.e., learned) in a variety of
ways (Sun, 2003).

On top of associative rules, similarity-
based reasoning may be employed in
the non-action-centered subsystem. Dur-
ing reasoning, a known (given or inferred)
chunk may be automatically compared with
another chunk. If the similarity between
them is sufficiently high, then the latter
chunk is inferred (see Sun, 2003, for details).
Similarity-based and rule-based reasoning
can be intermixed. As a result of mixing
similarity-based and rule-based reasoning,
complex patterns of reasoning emerge. As
shown by Sun (1994), different sequences
of mixed similarity-based and rule-based
reasoning capture essential patterns of
human everyday (mundane, common-sense)
reasoning.

As in the action-centered subsystem,
top-down or bottom-up learning may take
place in the non-action-centered subsystem,
either to extract explicit knowledge in the
top level from the implicit knowledge in the
bottom level or to assimilate explicit knowl-
edge of the top level into implicit knowledge
in the bottom level.

The motivational subsystem is concerned
with drives and their interactions (Toates,
1986). It is concerned with why an agent
does what it does. Simply saying that an
agent chooses actions to maximizes gains,
rewards, or payoffs leaves open the quest-
ion of what determines these things. The re-
levance of the motivational subsystem to the
action-centered subsystem lies primarily in
the fact that it provides the context in which
the goal and the payoff of the action-cente-
red subsystem are set. It thereby influences
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the working of the action-centered subsys-
tem and, by extension, the working of the
non-action-centered subsystem.

A bipartite system of motivational rep-
resentation is again in place in CLARION.
The explicit goals (such as “finding food”)
of an agent (which is tied to the working
of the action-centered subsystem) may be
generated based on internal drive states (for
example, “being hungry”). See Sun (2003)
for details.

Beyond low-level drives concerning phys-
iological needs, there are also higher-level
drives. Some of them are primary, in the
sense of being “hardwired.” For example,
Maslow (1987) developed a set of these
drives in the form of a “need hierarchy.”
Whereas primary drives are built-in and rel-
atively unalterable, there are also “derived”
drives, which are secondary, changeable, and
acquired mostly in the process of satisfying
primary drives.

The metacognitive subsystem is closely
tied to the motivational subsystem. The
metacognitive subsystem monitors, controls,
and regulates cognitive processes for the sake
of improving cognitive performance (Nel-
son, 1993; Sloman & Chrisley, 2003; Smith
etal., 2003). Control and regulation may be
in the forms of setting goals for the action-
centered subsystem, setting essential param-
eters of the action-centered and the non-
action-centered subsystem, interrupting and
changing ongoing processes in the action-
centered and the non-action-centered sub-
system, and so on. Control and regulation
may also be carried out through setting rein-
forcement functions for the action-centered
subsystem on the basis of drive states. The
metacognitive subsystem is also made up of
two levels: the top level (explicit) and the
bottom level (implicit).

Note that in CLARION, there are thus a
variety of memories: procedural memory
(in the action-centered subsystem) in both
implicit and explicit forms, general “seman-
tic” memory (in the non-action-centered
subsystem) in both implicit and explicit
forms, episodic memory (in the non-action-
centered subsystem), working memory (in
the action-centered subsystem), goal struc-

tures (in the action-centered subsystem),
and so on. See Sun (2003) for further
details of these memories. As touched upon
before, these memories are important for
accounting for various forms of conscious
and unconscious processes (also see, e.g.,
McClelland et al., 1995; Schacter, 1990;
Taylor, 1997).

CrARION has been successful in account-
ing for a variety of psychological data. A
number of well-known skill learning tasks
have been simulated using CrariON;these
span the spectrum ranging from simple reac-
tive skills to complex cognitive skills. The
tasks include serial reaction time (SRT) tasks,
artificial grammar learning (AGL) tasks, pro-
cess control (PC) tasks, the categorical infer-
ence (CI) task, the alphabetical arithmetic
(AA) task, and the Tower of Hanoi (TOH)
task (see Sun, 2002). Among them, SRT,
AGL, and PC are typical implicit learning
tasks, very much relevant to the issue of con-
sciousness as they operationalize the notion
of consciousness in the context of psycho-
logical experiments (Coward & Sun, 2004;
Reber, 1989; Seger, 1994; Sun et al., 2003),
whereas TOH and AA are typical high-level
cognitive skill acquisition tasks. In addition,
extensive work have been done on a com-
plex minefield navigation task (see Sun &
Peterson, 1998; Sun et al., 2001). Metacogni-
tive and motivational simulations have also
been undertaken, as have social simulation
tasks (e.g., Sun & Naveh, 2004).

In evaluating the contribution of CrArION
to our understanding of consciousness, we
note that the simulations using CLARION
provide detailed, process-based interpreta-
tions of experimental data related to con-
sciousness, in the context of a broadly
scoped cognitive architecture and a uni-
fied theory of cognition. Such interpreta-
tions are important for a precise, process-
based understanding of consciousness and
other aspects of cognition, leading to bet-
ter appreciations of the role of consciousness
in human cognition (Sun, 1999a). CLARION
also makes quantitative and qualitative pre-
dictions regarding cognition in the areas of
memory, learning, motivation, metacogni-
tion, and so on. These predictions either
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have been experimentally tested already or
are in the process of being tested (see, e.g.,
Sun, 2002; Sun et al., 2001, 2005). Because
of the complex structures and their com-
plex interactions specified within the frame-
work of CrLaRrION, it has a lot to say about
the roles that different types of processes,
conscious or unconscious, play in human
cognition, as well as their synergy (Sun etal.,
2005).

Comparing CrarioN with Bower (1996),
the latter may be viewed as a special case of
CrarION for dealing specifically with implicit
memory phenomena. The type-1 and type-z
connections, hypothesized by Bower (1996)
as the main explanatory constructs, can be
equated roughly to top-level representations
and bottom-level representations, respec-
tively. In addition to making the distinc-
tion between type-1 and type-2 connections,
Bower (1996) also endeavored to specify
the details of multiple pathways of spread-
ing activation in the bottom level. These
pathways were phonological, orthographi-
cal, semantic, and other connections that
store long-term implicit knowledge. In the
top level, associated with type-2 connec-
tions, it was claimed on the other hand
that rich contextual information was stored.
These details nicely complement the speci-
fication of CLARION and can thus be incorpo-
rated into the model.

The proposal by McClelland et al. (1995)
that there are complementary learning sys-
tems in the hippocampus and neocortex
is also relevant here. According to their
account, cortical systems learn slowly, and
the learning of new information destroys
the old, unless the learning of new infor-
mation is interleaved with ongoing expo-
sure to the old information. To resolve these
two problems, new information is initially
stored in the hippocampus, an explicit mem-
ory system, in which crisp, explicit repre-
sentations are used to minimize interference
of information (so that catastrophic inter-
ference is avoided there). It allows rapid
learning of new material. Then, the new
information stored in the hippocampus is
assimilated into cortical systems. The assim-
ilation is interleaved with the assimilation

of all other information in the hippocam-
pus and with the ongoing events. Weights
are adjusted by a small amount after each
experience, so that the overall direction of
weight change is governed by the struc-
ture present in the ensemble of events and
experiences, using distributed representa-
tions (with weights). Therefore, catastrophic
interference is avoided in cortical systems.
This model is very similar to the two-level
idea of CrLARION, in that it not only adopts
a two-system view but also utilizes repre-
sentational differences between the two sys-
tems. However, in contrast to this model,
which captures only what may be termed
top-down learning (that s, learning that pro-
ceeds from the conscious to the uncon-
scious), CLARION can capture both top-down
learning (from the top level to the bottom
level) and bottom-up learning (from the bot-
tom level to the top level). See Sun et al.
(2001) and Sun (2002) for details of bottom-
up learning.

Turning to the declarative/procedural
knowledge models, ACT* (Anderson, 1983)
is made up of a semantic network (for declar-
ative knowledge) and a production system
(for procedural knowledge). ACT-R is a
descendant of ACT*, in which procedural
learning is limited to production formation
through mimicking, and production firing
is based on log odds of success. CLARION
succeeds in explaining two issues that ACT
did not address. First, whereas ACT takes
a mostly top-down approach toward learn-
ing (i.e, from given declarative knowledge
to procedural knowledge), CLARION can pro-
ceed bottom-up. Thus, Clarion can account
for implicit learning better than ACT (see
Sun, 2002, for details). Second, in ACT
both types of knowledge are represented in
explicit, symbolic forms (i.e., semantic net-
works and productions), and thus it does
not explain, from a representational view-
point, the differences in conscious accessibil-
ity (Sun, 1999b). CLARION accounts for this
difference based on the use of two different
forms of representation. Top-level knowl-
edge is represented explicitly and thus con-
sciously accessible, whereas bottom-level
knowledge is represented implicitly and
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thus inaccessible. Thus, this distinction in
CLARION is intrinsic, instead of assumed as
in ACT (Sun, 1999b).

Comparing CrLarION with Hunt and Lans-
man’s (1986) model, there are similari-
ties. The production system in Hunt and
Lansman’s model clearly resembles the top
level in CrarioN, in that both use explicit
manipulations in much the same way. Like-
wise, the spreading activation in the seman-
tic network in Hunt and Lansman’s model
resembles the connectionist network in the
bottom level of CLARION, because the same
kind of spreading activation was used in
both models, although the representation in
Hunt and Lansman’s model was symbolic,
not distributed. Because of the uniformly
symbolic representations used in Hunt and
Lansman’s model, it does not explain con-
vincingly the qualitative difference between
conscious and unconscious processes (see

Sun, 1999b).

An Application of the Access View

Let us now examine an application of the
access view on consciousness in building a
practically useful system. The access view is
a rather popular approach in computational
accounts of consciousness (Baars, 2002), and
therefore it deserves some attention. Itis also
presented here as an example of various one-
system views.

Most computational models of cognitive
processes are designed to predict experi-
mental data. IDA (Intelligent Distribution
Agent), in contrast, models consciousness
in the form of an autonomous software
agent (Franklin & Graesser, 1997). Specif-
ically, IDA was developed for Navy appli-
cations (Franklin et al., 1998). At the end
of each sailor’s tour of duty, he or she is
assigned to a new billet in a process called
distribution. The Navy employs almost 300
people (called detailers) to effect these new
assignments. IDA’s task is to play the role of
a detailer.

Designing IDA presents both communi-
cation problems and action selection prob-
lems involving constraint satisfaction. It

must communicate with sailors via e-mail
and in English, understanding the con-
tent and producing human-like responses.
It must access a number of existing Navy
databases, again understanding the content.
It must see that the Navy’s needs are satisfied
while adhering to Navy policies. For exam-
ple, a particular ship may require a certain
number of sonar technicians with the req-
uisite types of training. It must hold down
moving costs. And it must cater to the needs
and desires of the sailor as well as possi-
ble. This includes negotiating with the sailor
via an e-mail correspondence in natural lan-
guage. Finally, it must authorize the finally
selected new billet and start the writing of
the sailor’s orders.

Although the IDA model was not initially
developed to reproduce experimental data,
it is nonetheless based on psychological
and neurobiological theories of conscious-
ness and does generate hypotheses and qual-
itative predictions (Baars & Franklin, 2003:
Franklin et al., 2005). IDA successfully
implements much of the global workspace
theory (Baars, 1988), and there is a growing
body of empirical evidence supporting that
theory (Baars, 2002). IDA’s flexible cogni-
tive cycle has also been used to analyze the
relation of consciousness to working mem-
ory at a fine level of detail, offering explana-
tions of such classical working memory tasks
as visual imagery to gain information and the
rehearsal of a telephone number (Baars &
Franklin, 2003: Franklin et al., 2005).

In his global workspace theory (see Fig-
ure 7.4), Baars (1988) postulates that human
cognition is implemented by a multitude
of relatively small, special-purpose proces-
sors, which are almost always unconscious
(i.e., the modularity hypothesis as discussed
earlier). Communication between them is
rare and over a narrow bandwidth. Coali-
tions of such processes find their way into
a global workspace (and thereby into con-
sciousness). This limited capacity workspace
serves to broadcast the message of the
coalition to all the unconscious proces-
sors in order to recruit other processors
to join in handling the current novel sit-
uation or in solving the current problem.
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Figure 7.4. Baars’ global workspace theory.

Thus consciousness, in this theory, allows
us to deal with novel or problematic situa-
tions that cannot be dealt with effciently, or
at all, by habituated unconscious processes.
In particular, it provides access to appro-
priately useful resources. Global workspace
theory offers an explanation for the lim-
ited capacity of consciousness. Large mes-
sages would be overwhelming to tiny pro-
cessors. In addition, all activities of these
processors take place under the auspices of
contexts: goal contexts, perceptual contexts,
conceptual contexts, and/or cultural con-
texts. Though contexts are typically uncon-
scious, they strongly influence conscious
processes.

Let us look into some details of the IDA
architecture and its main mechanisms. At
the higher level, the IDA architecture is
modular with module names borrowed from
psychology (see Figure 7.5). There are mod-
ules for Perception, Working Memory, Auto-
biographical Memory, Transient Episodic
Memory, Consciousness, Action Selection,
Constraint Satisfaction, Language Genera-
tion, and Deliberation.

In the lower level of IDA, the proces-
sors postulated by the global workspace the-
ory are implemented by “codelets.” Codelets
are small pieces of code running as indepen-

dent threads, each of which is specialized for
some relatively simple task. They often play
the role of “demons,”> waiting for a particu-
lar situation to occur in response to which
they should act. Codelets also correspond
more or less to Edelman’s neuronal groups
(Edelman, 1987) or Minsky’s agents (Minsky,
1985). Codelets come in a number of vari-
eties, each with different functions to per-
form. Most of these codelets subserve some
high-level entity, such as a behavior. How-
ever, some codelets work on their own, per-
forming such tasks as watching for incoming
e-mail and instantiating goal structures. An
important type of codelet that works on its
own is the attention codelets that serve to
bring information to “consciousness.”

IDA senses only strings of characters,
which are not imbued with meaning but
which correspond to primitive sensations,
like, for example, the patterns of activ-
ity on the rods and cones of the retina.
These strings may come from e-mail mes-
sages, an operating system message, or from
a database record.

The perception module employs analy-
sis of surface features for natural-language
understanding. It partially implements per-
ceptual symbol system theory (Barsalou,
1999); perceptual symbols serve as a uniform
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system of representations throughout the
system. Its underlying mechanism consti-
tutes a portion of the Copycat architecture
(Hofstadter & Mitchell, 1994). IDA’s per-
ceptual memory takes the form of a semantic
net with activation passing, called the slipnet
(see Figure 7.6). The slipnet embodies the
perceptual contexts and some conceptual
contexts from the global workspace theory.
Nodes of the slipnet constitute the agent’s
perceptual symbols. Perceptual codelets rec-
ognize various features of the incoming
stimulus; that is, various concepts. Percep-
tual codelets descend on an incoming mes-
sage, looking for words or phrases they rec-
ognize. When such are found, appropriate
nodes in the slipnet are activated. This acti-
vation passes around the net until it settles.
A node (or several) is selected by its high
activation, and the appropriate template(s)
is filled by codelets with selected items from
the message. The information thus created
from the incoming message is then written
to the workspace (working memory, to be
described below), making it available to the
rest of the system.

The results of this process, information
created by the agent for its own use, are
written to the workspace (working mem-
ory, not to be confused with Baars’ global
workspace). (Almost all of IDA’s modules
either write to the workspace, read from it,
or both.)

IDA employs sparse distributed mem-
ory (SDM) as its major associative memory
(Anwar & Franklin, 2003; Kanerva, 1988).
SDM is a content-addressable memory.
Being content addressable means that items
in memory can be retrieved by using part of
their contents as a cue, rather than having to
know the item’s address in memory.

Reads and writes, to and from associative
memory, are accomplished through a gate-
way within the workspace called the focus.
When any item is written to the workspace,
another copy is written to the read registers
of the focus. The contents of these read reg-
isters of the focus are then used as an address
to query associative memory. The results of
this query — that is, whatever IDA associates
with this incoming information — are writ-
ten into their own registers in the focus.
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This may include some emotion and some
action previously taken. Thus associations
with any incoming information, either from
the outside world or from some part of IDA
itself, are immediately available. (Writes to
associative memory are made later and are
described below.)

In addition to long-term memory, IDA
includes a transient episodic memory
(Ramamurthy, D’'Mello, & Franklin, 2004).
Long-term, content-addressable, associative
memories are not typically capable of
retrieving details of the latest of a long
sequence of quite similar events (e.g., where
I parked in the parking garage this morn-
ing or what I had for lunch yesterday). The
distinguishing details of such events tend to
blur due to interference from similar events.
In IDA, this problem is solved by the addi-
tion of a transient episodic memory imple-
mented with a sparse distributed memory.
This SDM decays so that past sequences of
similar events no longer interfere with the
latest such events.

The apparatus for producing “conscious-
ness” consists of a coalition manager, a spot-
light controller, a broadcast manager, and a
collection of attention codelets that recog-
nize novel or problematic situations. Atten-

tion codelets have the task of bringing infor-
mation to “consciousness.” Each attention
codelet keeps a watchful eye out for some
particular situation to occur that might call
for “conscious” intervention. Upon encoun-
tering such a situation, the appropriate
attention codelet will be associated with the
small number of information codelets that
carry the information describing the situ-
ation. This association should lead to the
collection of this small number of codelets,
together with the attention codelet that col-
lected them, becoming a coalition. Codelets
also have activations. The attention codelet
increases its activation in proportion to how
well the current situation fits its particular
interest, so that the coalition might compete
for “consciousness,” if one is formed.

In IDA, the coalition manager is respon-
sible for forming and tracking coalitions of
codelets. Such coalitions are initiated on the
basis of the mutual associations between
the member codelets. At any given time,
one of these coalitions finds it way to “con-
sciousness,” chosen by the spotlight con-
troller, which picks the coalition with the
highest average activation among its mem-
ber codelets. Baars’ global workspace the-
ory calls for the contents of “consciousness”
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to be broadcast to each of the codelets in
the system, and in particular, to the behav-
ior codelets. The broadcast manager accom-
plishes this task.

IDA depends on the idea of a behavior net
(Maes, 1989; Negatu & Franklin, 2002) for
high-level action selection in the service of
built-in drives. It has several distinct drives
operating in parallel, and these drives vary
in urgency as time passes and the environ-
ment changes. A behavior net is composed
of behaviors and their various links. A behav-
ior has preconditions as well as additions and
deletions. A behavior also has an activation, a
number intended to measure the behavior’s
relevance to both the current environment
(external and internal) and its ability to help
satisfy the various drives it serves.

The activation comes from activation
stored in the behaviors themselves, from the
external environment, from drives, and from
internal states. The environment awards
activation to a behavior for each of its true
preconditions. The more relevant it is to
the current situation, the more activation it
receives from the environment. (This source
of activation tends to make the system
opportunistic.) Each drive awards activation
to every behavior that, by being active, will
help satisfy that drive. This source of activa-
tion tends to make the system goal directed.
Certain internal states of the agent can also
send activation to the behavior net. This
activation, for example, might come from a
coalition of codelets responding to a “con-
scious” broadcast. Finally, activation spreads
from behavior to behavior along links.

IDA’s behavior net acts in consort with
its “consciousness” mechanism to select
actions (Negatu & Franklin, 2002). Sup-
pose some piece of information is written to
the workspace by perception or some other
module. Attention codelets watch both it
and the resulting associations. One of these
attention codelets may decide that this infor-
mation should be acted upon. This codelet
would then attempt to take the informa-
tion to “consciousness,” perhaps along with
any discrepancies it may find with the help
of associations. If the attempt is success-
ful, the coalition manager makes a coalition

of them, the spotlight controller eventually
selects that coalition, and the contents of the
coalition are broadcast to all the codelets.
In response to the broadcast, appropri-
ate behavior-priming codelets perform three
tasks: an appropriate goal structure is instan-
tiated in the behavior net, the codelets bind
variables in the behaviors of that struc-
ture, and the codelets send activation to the
currently appropriate behavior of the struc-
ture. Eventually that behavior is chosen to be
acted upon. At this point, information about
the current emotion and the currently exe-
cuting behavior is written to the focus by the
behavior codelets associated with the cho-
sen behavior. The current contents of the
write registers in the focus are then writ-
ten to associative memory. The rest of the
behavior codelets associated with the chosen
behavior then perform their tasks. Thus, an
action has been selected and carried out by
means of collaboration between “conscious-
ness” and the behavior net.

This background information on the IDA
architecture and mechanisms should enable
the reader to understand IDA’s cognitive
cycle (Baars & Franklin, 2003: Franklin
et al., 2005). The cognitive cycle specifies
the functional roles of memory, emotions,
consciousness, and decision making in cogni-
tion, according to the global workspace the-
ory. Below, we sketch the steps of the cogni-
tive cycle; see Figure 7.5 for an overview.

1. Perception. Sensory stimuli, external or
internal, are received and interpreted by
perception. This stage is unconscious.

2. Percept to Preconscious Buffer. The percept
is stored in preconscious buffers of IDA’s
working memory.

3. Local Associations. Using the incoming
percept and the residual contents of the
preconscious buffers as cues, local asso-
ciations are automatically retrieved from
transient episodic memory and from long-
term memory.

4. Competition for Consciousness. Attention
codelets, whose job is to bring relevant,
urgent, or insistent events to conscious-
ness, gather information, form coalitions,
and actively compete against each other.
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(The competition may also include atten-
tion codelets from a recent previous
cycle.)

. Conscious Broadcast. A coalition of code-

lets, typically an attention codelet and its
covey of related information codelets car-
rying content, gains access to the global
workspace and has its contents broadcast.
The contents of perceptual memory are
updated in light of the current contents of
consciousness. Transient episodic mem-
ory is updated with the current contents
of consciousness as events. (The contents
of transient episodic memory are sepa-
rately consolidated into long-term mem-
ory.) Procedural memory (recent actions)
is also updated.

. Recruitment of Resources. Relevant behav-

ior codelets respond to the conscious
broadcast. These are typically codelets
whose variables can be bound from infor-
mation in the conscious broadcast. If
the successful attention codelet was an
expectation codelet calling attention to an
unexpected result from a previous action,
the responding codelets may be those that
can help rectify the unexpected situation.
(Thus consciousness solves the relevancy
problem in recruiting resources.)

. Setting Goal Context Hierarchy. The

recruited processors use the contents of
consciousness to instantiate new goal
context hierarchies, bind their variables,
and increase their activation. Emotions
directly affect motivation and determine
which terminal goal contexts receive acti-
vation and how much. Other (environ-
mental) conditions determine which of
the earlier goal contexts receive addi-
tional activation.

. Action Chosen. The behavior net chooses

a single behavior (goal context). This
selection is heavily influenced by acti-
vation passed to various behaviors influ-
enced by the various emotions. The
choice is also affected by the current situ-
ation, external and internal conditions, by
the relation between the behaviors, and
by the residual activation values of vari-
ous behaviors.

9. Action Taken. The execution of a behav-
ior (goal context) results in the behav-
ior codelets performing their specialized
tasks, which may have external or internal
consequences. The acting codelets also
include an expectation codelet (see Step
6) whose task is to monitor the action and
to try and bring to consciousness any fail-
ure in the expected results.

IDA’s elementary cognitive activities
occur within a single cognitive cycle. More
complex cognitive functions are imple-
mented over multiple cycles. These include
deliberation, metacognition, and voluntary
action (Franklin, 2000).

The IDA model employs a methodology
that is different from that which is currently
typical of computational cognitive models.
Although the model is based on experimen-
tal findings in cognitive psychology and brain
science, there is only qualitative consistency
with experiments. Rather, there are a num-
ber of hypotheses derived from IDA as a
unified theory of cognition. The IDA model
generates hypotheses about human cogni-
tion and the role of consciousness through
its design, the mechanisms of its modules,
their interaction, and its performance.

Every agent must sample and act on its
world through a sense-select-act cycle. The
frequent sampling allows for a fine-grained
analysis of common cognitive phenomena,
such as process dissociation, recognition vs.
recall, and the availability heuristic. Ata high
level of abstraction, the analyses support
the commonly held explanations of what
occurs in these situations and why. At a finer-
grained level, the analyses flesh out common
explanations, adding details and functional
mechanisms. Therein lies the value of these
analyses.

Unfortunately, currently available tech-
niques for studying some phenomena at a
fine-grained level, such as PET, fMRI, EEG,
implanted electrodes, etc., are lacking either
in scope, in spatial resolution, or in temporal
resolution. As a result, some of the hypothe-
ses from the IDA model, although testable
in principle, seem not to be testable at the
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Figure 7.7. Schacter’s model of consciousness.

present time for lack of technologies with
suitable scope and resolution.

There is also the issue of the breadth
of the IDA model, which encompasses per-
ception, working memory, declarative mem-
ory, attention, decision making, procedural
learning, and more. How can such a broad
model produce anything useful? The IDA
model suggests that these various aspects
of human cognition are highly integrated.
A more global view can be expected to
add additional understanding to that produ-
ced by more specific models. This assertion
seems to be borne out by the analyses of vari-
ous cognitive phenomena (Baars & Franklin,
2003; Franklin et al., 2005).

Sketches of Some Other Views

As we have seen, there are many attempts
to explain the difference in conscious acces-
sibility. Various explanations have been
advanced in terms of the content of knowl-
edge (e.g., instances vs. rules), the organi-
zation of knowledge (e.g., declarative vs.
procedural), processing mechanisms (e.g.,
spreading activation vs. rule matching and
firing), the representation of knowledge
(e.g., localist/symbolic vs. distributed), and

so on. In addition to the two views elab-
orated on earlier, let us look into some
more details of a few other views. Although
some of the models that are discussed
below are not strictly speaking computa-
tional (because they may not have been
fully computationally implemented), they
are nevertheless important because they
point to possible ways of constructing com-
putational explanations of consciousness.
We can examine Schacter’s (199o) model
as an example. The model is based on neu-
ropsychological findings of the dissociation
of different types of knowledge (especially in
brain-damaged patients). It includes a num-
ber of “knowledge modules” that perform
specialized and unconscious processing and
may send their outcomes to a “conscious
awareness system,” which gives rise to con-
scious awareness (see Figure 7.7). Schacter’s
explanation of some neuropsychological dis-
orders (e.g., hemisphere neglect, blindsight,
aphasia, agnosia, and prosopagnosia) is that
brain damages result in the disconnection
of some of the modules from the conscious
awareness system, which causes their inac-
cessibility to consciousness. However, as has
been pointed out by others, this explana-
tion cannot account for many findings in
implicit memory research (e.g., Roediger,
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Figure 7.8. Damasio’s model of consciousness.

1990). Revonsuo (1993) advocated a similar
view, albeit from a philosophical viewpoint,
largely on the basis of using Schacter’s (1990)
data as evidence. Johnson-Laird’s (1983)
model was somewhat similar to Schacter’s
model in its overall structure in that there
was a hierarchy of processors and conscious-
ness resided in the processes at the top of
the hierarchy. Shallice (1972) put forward
a model in which a number of “action sys-
tems” could be activated by “selector input”
and the activated action systems correspond
to consciousness. It is not clear, however,
what the computational (mechanistic) dif-
ference between conscious and unconscious
processes is in those models, which did not
offer a mechanistic explanation.

We can compare Schacter (1990)’s model
with CLARION. Itis similar to CLARION, in that
it includes a number of “knowledge mod-
ules” that perform specialized and uncon-
scious processing (analogous to bottom-level
modules in CrarION) and send their out-
comes to a “conscious awareness system”
(analogous to the top level in CLARION),
which gives rise to conscious awareness.
Unlike Crarion’s explanation of the con-
scious/unconscious distinction through the
difference between localist/symbolic versus
distributed representations, however, Schac-
ter’s model does not elucidate in computa-
tional/mechanistic terms the qualitative dis-
tinction between conscious and unconscious
processes, in that the “conscious awareness
system” lacks any apparent qualitative dif-
ference from the unconscious systems.

printer: cupusbw
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We can also examine Damasio’s neu-
roanatomically motivated model (Dama-
sio et al., 1990). The model hypothesizes
the existence of many “sensory convergence
zones” that integrate information from indi-
vidual sensory modalities through forward
and backward synaptic connections and the
resulting reverberations of activations, with-
out a central location for information stor-
age and comparisons; it also hypothesizes
the global “multimodal convergence zone,”
which integrates information across modal-
ities also through reverberation (via recur-
rent connections; see Figure 7.8). Corre-
lated with consistency is global informa-
tion availability; that is, once “broadcast”
or “reverberation” is achieved, all the infor-
mation about an entity stored in difference
places of the brain becomes available. This
was believed to have explained the accessi-
bility of consciousness.® In terms of CLARION,
different sensory convergence zones may be
roughly captured by bottom-level modules,
each of which takes care of sensory inputs of
one modality (at a properly fine level), and
the role of the global multi-modal conver-
gence zone (similar to the global workspace
in a way) may be played by the top level of
CrARION, which has the ultimate responsi-
bility for integrating information (and also
serves as the “conscious awareness system”).
The widely recognized role of reverberation
(Damasio, 1994; Taylor, 1994) may be cap-
tured in Crarion through using recurrent
connections within modules at the bottom
level and through multiple top-down and
bottom-up information flows across the two
levels, which leads to the unity of conscious-
ness that is the synthesis of all the informa-
tion present (Baars, 1988; Marcel, 1983).

Similarly, Crick and Koch (1990) hypoth-
esize that synchronous firing at 35—75 Hz in
the cerebral cortex is the basis for conscious-
ness — with such synchronous firing, pieces
of information regarding different aspects
of an entity are brought together, and thus
consciousness emerges. Although conscious-
ness has been experimentally observed to
be somewhat correlated with synchronous
firing at 35-75 Hz, there is no explana-
tion of why this is the case and there is
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no computational/mechanistic explanation
of any qualitative difference between 35—
75 Hz synchronous firing and other firing
patterns.

Cotterill (1997) offers a “master-module”
model of consciousness, which asserts that
consciousness arises from movement or the
planning of movement. The master-module
refers to the brain region that is responsi-
ble for motor planning. This model sees the
conscious system as being profligate with its
resources: Perforce it must plan and organize
movements, even though it does not always
execute them. The model stresses the vital
role that movement plays and is quite com-
patible with the IDA model. This centrality
of movement was illustrated by the obser-
vation that blind people were able to read
braille when allowed to move their fingers,
but were unable to do so when the dots were
moved against their still fingers (Cotterill,
1997).

Finally, readers interested in the possibil-
ity of computational models of conscious-
ness actually producing “conscious” artifacts
may consult Holland (2003 ) and other work
along that line.

Concluding Remarks

This chapter has examined general frame-
works of computational accounts of con-
sciousness. Various related issues, such as
the utility of computational models, expla-
nations of psychological data, and poten-
tial applications of machine consciousness,
have been touched on in the process. Based
on existing psychological and philosophical
evidence, existing models were compared
and contrasted to some extent. It appears
inevitable at this stage that there is the coex-
istence of various computational accounts of
consciousness. Each of them seems to cap-
ture some aspect of consciousness, but each
also has severe limitations. To capture the
whole picture in a unified computational
framework, much more work is needed. In
this regard, CLARION and IDA provide some
hope.

Much more work can be conducted on
various issues of consciousness along this
computational line. Such work may include
further specifications of details of compu-
tational models. It may also include recon-
ciliations of existing computational models
of consciousness. More importantly, it may,
and should, include the validation of compu-
tational models through empirical and the-
oretical means. The last point in particular
should be emphasized in future work (see
the earlier discussions concerning CLARION
and IDA). In addition, we may also attempt
to account for consciousness computation-
ally at multiple levels, from phenomenol-
ogy, via various intermediate levels, all the
way down to physiology, which will likely
lead to a much more complete computa-
tional account and a much better picture of
consciousness (Coward & Sun, 2004).
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Notes

1. There are also various numerical measures
involved, which are not important for the
present discussion.

2. Cleeremans and McClelland’s (1991) model of
artificial grammar learning can be viewed as
instantiating half of the system (the uncon-
scious half), in which implicit learning takes
place based on gradual weight changes in
response to practice on a task and the result-
ing changes in activation of various represen-
tations when performing the task.

3. Note that the accessibility is defined in terms
of the surface syntactic structures of the
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objects being accessed (at the level of out-
comes or processes), not their semantic mean-
ings. Thus, for example, a LISP expression
is directly accessible, even though one may
not fully understand its meaning. The internal
working of a neural network may be inaccessi-
ble even though one may know what the net-
work essentially does (through an interpretive
process). Note also that objects and processes
that are directly accessible at a certain level
may not be accessible at a finer level of details.

4. This activation of features is important in sub-
sequent uses of the information associated
with the concept and in directing behaviors.

5. This is a term borrowed from computer oper-
ating systems that describes a small piece of
code that waits and watches for a particular
event or condition to occur before it acts.

6. However, consciousness does not necessar-
ily mean accessibility/availability of all the
information about an entity; for otherwise,
conscious inference, deliberate recollection,
and other related processes would be unnec-
essary.
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