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Table 5.8 Parameters setting for synthetic stripe data

Algorithm t1 t2 t3 αt αp w st Sw

NSA 0.001 - - - - - 1000 1

Classical CSPRA 0.001 0.4 0.0005 - - - 1000 1

Selective CSPRA 0.001 0.4 - 0.5 0.5 0.5 1000 1

Table 5.9 The detection results from synthetic stripe data

Algorithm
Detection Rate False Alarm Rate

t1 = 0.001 t1 = 0.002 t1 = 0.001 t1 = 0.002

NSA 77.55 58.49 45.93 24.30

Classical CSPRA 77.55 58.49 26.73 9.84

Selective CSPRA 86.71 75.78 27.70 14.22

self), relative to the early established “self”knowledge, are anomalies or intrusions.

This intrinsic limit of the NSA has been significantly alleviated in the CSPRA. The

simple idea - “nonself is an anomaly” - is not always true in the CSPRA. Instead,

these “nonself” discovered by the T detector is further guarded by the APC detector

in the CSPRA. Only those “nonself” samples that are very foreign to the self are

classified as anomalies.

Numerous experiments with real world data have been carried out to demonstrate

that the CSPRA outperforms the NSA, as reported in section 5.3. Now, we want to

design some experiments with 2-D synthetic stripe data [130] mainly to demonstrate

the difference between the CSPRA and the NSA. The experiments are conducted

with 500 “self” training data and 1500 testing data (823 “self” and ‘677 ‘nonself”).

As shown in Fig. 5.18, in the context of 2-D data, the entire searching space (universe

space) is a 2-D square [0, 1]2 and the training self points are distributed randomly

over the self space (the shaded region) of the stripe shape. The parameter settings
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for the experiments reported in this section are listed in Table 5.8. The purpose of

the experiment design in this section is to show what the issues of the NSA are and

how the CSPRA achieves the better results under the same experimental settings

instead of finding the best results for either CSPRA or NSA by tuning the control

parameters. Thus, the parameter values listed in Table 5.8 are not meant to produce

the better performance for the CSPRA or the NSA. To remove the impact of the

random-based generation of T detectors and make the comparison relatively fair, the

T detector set is only generated once for each self threshold(t1) and is then shared

by all three algorithms (NSA, Classical CSPRA and Selective CSPRA). The first

column in stripe data is viewed as the conserved self pattern based on the results

from our initial testing. The advantage of the 2-D data is to make it possible to plot

the result data and intuitively analyze the effect of the detection. The visual results

are depicted in Fig. 5.19 - Fig. 5.24, where the blue circles stand for true negatives

(TN) whereas gray circles are false negatives (FN). The self region in these figures are

also shaded. The red circles represent “anomalies” reported by the algorithm. If the

red circles are located inside the self region, then the false positives (FP) are counted;

otherwise, they represent true positives (TP). The results from Fig. 5.19 to Fig. 5.21

are obtained with the self threshold of 0.001. The red circles inside the self region in

Fig. 5.20 and Fig. 5.21 are obviously less than those in Fig. 5.19, which indicates that

the CSPRA has significantly reduced the false positives compared to the detection of

the NSA. On the other hand, the number of red circles outside the shaded region is

very similar in Fig. 5.19, Fig. 5.20 and Fig. 5.21. These observations are consistent

with the actual detection results reported in Table 5.9. The experimental results

with different self threshold (t1 = 0.002), as shown in Fig. 5.22 - Fig. 5.24, also

confirms that the CSPRA greatly alleviates the NSA’s intrinsic issues by lessening

false positives.
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Figure 5.18 Synthetic stripe data (the shaded region is self): (a) training
data; (b) testing data

5.5 Summary

As a computational imitation of the PRRs model, the anomalies in the CSPRA

are determined by combining the results from APCs self pattern recognition and T

cell negative selection. To resolve the conflicts for anomaly detection between the

two types of the detectors, two strategies, known as Classical CSPRA and Selective

CSPRA, were proposed. This chapter provides the flow charts to clarify differences

between the two detection strategies. Additionally, comparisons of the CSPRA to

other one-class classifiers show that our algorithm produces better performance. Our

work also suggests that non-uniform random number generators are unsuitable to

be used for detector generation in the NSA family. The properties, complexity and

features of the CSPRA are extensively studied in this chapter with additional exper-

iments and theoretical analysis. This study concludes that it is flexible to import

the other NSA variants to the CSPRA as the strategy of T detector and thus the

advantages of other NSA variants can be inherited in the CSPRA. This study also

reveals that the performance of the CSPRA is never worse than that of the NSA
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Figure 5.19 Detecting results from NSA (FP = 378): self threshold 0.001
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Figure 5.20 Detecting results from Classical CSPRA (FP = 220): self
threshold 0.001
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Figure 5.21 Detecting results from Selective CSPRA (FP = 228): self
threshold 0.001
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Figure 5.22 Detecting results from NSA (FP = 200): self threshold 0.002
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Figure 5.23 Detecting results from Classical CSPRA (FP = 81): self thresh-
old 0.002
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Figure 5.24 Detecting results from Selective CSPRA (FP = 117): self
threshold 0.002
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because we can always find the appropriate parameter values to enable the CSPRA

to at least work like NSA. This chapter argues that the CSPRA could alleviate some

issues in NSA because it applies a revised assumption - only those nonself samples

that are very foreign to the self are anomalies.
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Chapter 6

An Efficient and Effective

Network-based Intrusion Detection

Using Conserved Self Pattern

Recognition Algorithm Augmented

with Near-deterministic Detector

Generation

The Human Immune System (HIS) employs multilevel defense against harmful and

unseen pathogens through innate and adaptive immunity. Innate immunity is in-

herent and protects the body from the known invaders whereas adaptive immunity

develops a memory of past encounter and has the ability to learn about previously

unknown pathogens. These salient features of the HIS are inspiring the researchers

in the area of intrusion detection to develop automated and adaptive defensive tools.

This chapter presents a new variant of Conserved Self Pattern Recognition Algorithm
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(CSPRA) called CSPRA-ID (CSPRA for Intrusion Detection). The CSPRA-ID is

given the capability of effectively identifying known intrusions by utilizing the knowl-

edge of well-known attacks to build a conserved self pattern (APC detector) while

it retains the ability to detect novel intrusions because of the nature of one-class

classification of the T detectors. Furthermore, the T detectors in the CSPRA-ID

are generated with a novel near-deterministic scheme that is proposed in this chap-

ter. The near-deterministic generation scheme places the detector with Brute Force

method to guarantee the next detector to be very foreign to the existing detector.

Moreover, the placement of the variable-sized detector is online determined during

the Monte Carlo estimate of detector coverage and thus the detectors with an optimal

distribution are generated without any additional optimization step. A comparative

study of the CSPRA-ID to one-class SVM shows that the CSPRA-ID is promising on

DARPA network intrusion data in terms of detection accuracy (measured by detection

rate and false alarm rate) and computation efficiency.

6.1 Introduction

While the network-based computer systems serve uncountable personal and profes-

sional needs for millions of people and corporations by connecting hundreds of millions

of computers across the world, they have become the target of intrusions and attacks

by our enemies and criminals. Computer Economics (www.computereconomics.com)

estimated that annual worldwide economic damages from Malware (viruses, spyware,

adware, botnets, and other malicious code) exceeded $13 billion. Various techniques

such as encryption and firewalls have been developed for preventing intrusions. Intru-

sion detection is another significant technique used to monitor malicious or unwanted

network and/or system activities. It can be broadly categorized into anomaly de-

tection and misuse detection. Anomaly detection systems base its decision on the
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established normal usage profiles while misuse detection system use patterns of well-

known attacks or weak spots of the systems to match and identify known intrusions,

patterns or signatures. It is the widely-held brief that the nature of current and future

threats in conjunction with ever larger computer systems makes it more important

to develop an automated and adaptive detection system. Anomaly detection system

shows its unique advantages in detecting previously unseen intrusions or anomalies

because no information of intrusions or attack signatures is defined in the system.

The Human Immune System (HIS) can detect and defend against harmful and

unknown pathogens. It achieves this protection by the distributed, self-organized,

lightweight and multi-layered nature of the mechanisms. Artificial Immune System

(AIS) seeks to use observed immune components and processes as metaphors to pro-

duce systems that encapsulate these beneficial properties in the HIS. Among which,

both network-based models and self-nonself models are mostly explored in the AIS

field. The negative selection approach (along with other newer algorithms) has been

by far the most popular when building intrusion detection system [144]. However,

the traditional self-nonself model in the HIS has failed to explain many findings such

as alerted self, pregnancy, aging and so forth. The new theories such as costimulation

self-nonself model, pattern recognition receptors (PRRs) model, and danger model

have been proposed [175]. Recently, a Conserved Self Pattern Recognition Algorithm

(CSPRA) was developed with the abstraction of the PRRs model [261] and proved

that it produces promising performance in the field of anomaly detection [262, 263].

In a Negative Selection Algorithm (NSA), a collection of detectors is used to classify

the incoming sample as normal (self) or abnormal (nonself). Rather than presetting

the number of the detectors, several works were carried out attempting to use an esti-

mate of detector coverage as a criterion to decide when the generation of detectors is

terminated [12,95,133]. These early works are briefly reviewed and the existing issues

are discussed in section 6.2 to provide the concise and indispensable background of
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our work that is to be presented in this chapter.

In this chapter, we develop a novel scheme of detector generation that is charac-

terized by generating the detectors in a near-deterministic manner with the optimal

distribution without requiring additional step of the optimization. The section 6.3

first provides the detailed description of the algorithm and the fundamental idea be-

hind the algorithm to facilitate the understanding and replication of our proposed

approach. The algorithm makes use of Quasi-Monte Carlo Integration to automat-

ically generate very efficient variable-sized detector. Unlike the random-based gen-

eration in the early works, the placement of the next detector in our algorithm is

determined with the Brute Force method at the same time when the coverage is

estimated. Another important feature of the proposed algorithm is that self radius

(rself ), which is a usually defined control parameter in the NSA and its variations, is

removed to make the algorithm more operable and reliable. Section 6.3 also discusses

the rational and advantages of the removal of this control parameter. The strength

of the proposed algorithm is demonstrated in section 6.3 by comparing with a recent

NSA variation called V-detector [129,133] in terms of fundamental ideas, estimate of

detector coverage, and detecting performance.

Despite the method of near-deterministic detector generation, another contribu-

tion of this chapter is an immunity-based efficient and effective intrusion detection

system, as described in section 6.4. This system is built upon our early proposal of

the CSPRA in which the anomaly is reported based on a group decision from both

APC detector and T detector. We call this work Intrusion Detection Conserved Self

Pattern Recognition Algorithm (CSPRA-ID) because it is specific for network-based

intrusion detection. There are two major differences between the proposed CSPRA-

ID and the early version of the CSPRA [261]. First, the T detectors are generated

in a near-deterministic manner described in section 6.3.1, which can produce higher

detection rate with fewer detectors as indicated in the experimental results reported
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in section 6.3.2. Second, on the basis of the complexity analysis for the detection

by different detectors (APC detector or T detector), the incoming sample (network

connection record) is first checked against APC detector instead of T detector (like in

the first version of the CSPRA [261]) in the CSPRA-ID. This change seems trivial but

the effect is more subtle than it appears because the CSPRA-ID shows an impressive

performance in accurately detecting the intrusions while the time it responds to the

attacks has been dramatically reduced. To evaluate the performance of our algorithm

and make a relatively definitive conclusion, we tested the CSPRA-ID on the DARPA

network intrusion data [114] by using a large testing data set consisting of more than

4.4 million network connection records. The experimental results are compared with

these obtained by the one-class SVM (Support Vector Machine), which is consistently

considered as an effective method on the DARPA intrusion data [134,222]. The com-

parative study in section 6.4.3 confirms the efficiency and effectiveness of the proposed

intrusion detection algorithm.

6.2 Related Works

6.2.1 Real-valued Negative Selection Algorithms

Since the binary representation was used in the first version of the NSA [77], it has

dominated the NSA research area due to its advantage of being easily analyzed by

enumerative combinatorics [15, 66]. However, Gonzalez et al. reported that binary

representation is unable to capture the structure of simple problem spaces and thus

prevents the extraction of meaningful domain knowledge [93]. Many applications

that are naturally real valued cannot be represented effectively in a binary form.

Applying real-valued representation to these problems makes it easier to extract high-

level knowledge from the training data and interpret the output from the algorithm.

Real-valued NSAs are relatively less explored in comparison to binary alternatives.
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[94] and [95] represent the earlier works related to real-valued NSA in the existing

literature. More recent work in real-valued NSAs is the development of V-detector

[132]. V-detector algorithm generates candidate detectors randomly, but it records the

Euclidean distance during the detector generation and assigns a variable radius based

on the minimum distance to each matured detector. In V-detector, each detector has

its own radius, which is basically decided by the closest self sample and used in the

detection phase. V-detector was extended in [129] through introducing the concept

of boundary-aware. The only difference between boundary-aware V-detector and the

earlier version of V-detector is that the assignment for the radius of each detector

that is going to be retained is changed. For the boundary-aware V-detector, the

detector’s radius to be decided is exactly the distance from the center of the detector

candidate to the nearest self point. An antigen feedback mechanism to generate

effective detectors was proposed in [165]. In addition to the randomly generated

detectors, the unmatched antigen is copied into the detector space called feedback

detector. Work in [12] used genetic algorithm to generate the detector set in real-

valued NSA. Each chromosome represents a possible detector set where each gene

represents a pointer (index) to a certain n-dimension point (detector’s center) in a

sequence of samples with a probability distribution. The volume of the detector set

is used to evaluate the fitness of the solution coded in the chromosome.

Conserved Self Pattern Recognition Algorithm (CSPRA) [261] has been recently

developed, which takes it as inspiration a newer theory of self-nonself discrimination

known as the Pattern Recognition Receptors (PRRs) model [125]. In comparison

to the single type of detectors (T detectors) in real-valued NSA, this algorithm in-

troduces an additional type of detector, known as APC detector, specific for the

detection of conserved self pattern in the problem spaces. The anomaly detection in

CSPRA considers the effectiveness of self pattern recognition by APC detector and

negative selection by T detector under different conditions, two detection strategies
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(Classical CSPRA and Selective CSPRA) were proposed [261–263] in order to wisely

select the detection results from two detectors. Section 6.4.2 will further explore the

detailed techniques specific for the intrusion detection problems we solved in this

chapter. While the early experiments and comparative study showed that CSPRA

produces promising performance in the field of anomaly detection, the efficiency and

effectiveness of the CSPRA have not been assessed with a larger and more compli-

cated data set. This reason leads to the work in this chapter and a new idea of

generating detectors is derived to efficiently solve the target problem.

6.2.2 Estimate of Detector Coverage

Detector coverage is the ratio of covered nonself space by detectors to the entire non-

self space. The number of detectors directly influences the detecting performance

in the field of anomaly detection. Fewer detectors generate a lower detection rate

in most cases. More detectors not only significantly raise the false alarm rate but

also greatly slow down the detecting process. Therefore, covering larger nonself space

with minimum detectors is the major goal that many researchers in this area attempt

to achieve. Estimate of detector coverage is expected to help determine the optimal

number of detectors for a problem domain to be solved. Some efforts for estimating

detector coverage in NSAs were reported [12, 61, 77, 95, 133, 225]. This section intro-

duces the estimate methods of hypothesis testing and Monte Carlo integration that

we are going to further compare and explore.

Hypothesis Testing

Ji et al. introduced the method of hypothesis testing to estimate detector coverage in

a negative selection algorithm. This method involves the following major steps [133]:

1. State the null/alternative hypothesis.
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2. Determine the cost associated with the Type 1 error (rejecting the true null

hypothesis) and Type II error (accepting a false null hypothesis).

3. Collect the data and compute z score based on training samples

4. Reject or accept the null hypothesis.

When estimating detector coverage, the null hypothesis is defined as “The coverage

of the nonself region by all the existing detector is below percentage pmin”. The

detector is continuously generated until the null hypothesis is rejected. If the null

hypothesis is mistakenly rejected, that is, the detector generation is terminated too

early with fewer than actual coverage, the system makes a Type I error. If there are

x points covered, for n samples, z= x√
npq

-
√

np
q

. If the test statistic is in the critical

region (z > zα), the null hypothesis is rejected and enough coverage is reached. This

method has been integrated to V-detector to estimate detector coverage [133].

Monte Carlo Integration

The Monte Carlo Integration methods are usually used for the approximate evaluation

of definite multidimensional integrals. To estimate the area of a domain D using

Monte Carlo Integration, the normal procedure includes the following steps:

1. Pick a simple domain d which satisfies two requirements: a) it contains domain

D; b) its area is known or easily calculated.

2. Pick a sequence of random points that fall within the domain d.

3. Calculate the fraction of those points in step 2 that falls within the domain D.

The area of domain D is then estimated as this fraction multiplied by the area

of domain d.

Mathematically, given a multidimensional definite integral of the form
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I =
∫ b1
a1

dx1
∫ b2
a2

dx2 · · ·
∫ bn
an

dxnf (x1, x2, · · · , xn) ≡
∫
v

f
(
X
)

dX

where and V is the integration volume. Suppose that N samples x1, x2, , xN are

picked, then the estimate for the integral is given by equation 6.1.

I ≈ Q ≡ V
1

N

N∑
i=1

f (xi) (6.1)

According to the central limit theorem the variance of the above estimate can be

approximated by equation 6.2

var (Q) = V 2σ
2

N
(6.2)

By applying Monte Carlo Integration, we have to determine the smallest sample

size N that guarantees the estimate error no larger than ε. Fishman had given

a sufficient discussion for this fundamental question in his book [73]. To count for

randomness, a confidence level 1 - δ with 0 < δ < 1 is specified. By using Chebyshev’s

inequality, the worst-case sample size was derived by equation 6.3

nc (ε, δ) =

⌈
1

4δε2

⌉
(6.3)

Monte Carlo Integration method was used in several works in the researches on the

NSA. [225] discussed several properties of hyperspheres in the artificial immune sys-

tem and summarized a simple algorithm to estimate the volume of overlapping hyper-

spheres based on the principle of Monte Carlo Integration. However, this work didn’t

put the proposed algorithm in practical use. Gonzalez et al. proposed a Randomized

Real-valued Negative Selection Algorithm based on Monte Carlo methods [95]. This

work generalized the inputted self set (a subset of the self set) by introducing a pa-

rameter r self and assumed that an element that is close enough (defined by r self ) to a

self sample is also a self. Monte Carlo Integration method is then used for estimating

the volume of the generalized self set. The volume of the non-self space (V non-self =
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1 - V self ) determines the number of the detectors that are necessary for detecting

anomalies. A potential problem for the proposed RRNS is that if the volume of the

self set is estimates as 100%, then the algorithm will be terminated without generat-

ing any detector. The possibility of the unexpected termination could be influenced

by the size and distribution of the training data and the uniform degree of the random

points. Based on the discussion in [225], the occurrence of this problem, in particu-

lar, is greatly increased when training with high-dimensioned data. [12] proposed a

scheme of detector generation based on Genetic Algorithm. The fitness of the solution

coded in the chromosome is evaluated by the volume of the detector set. However,

the answers for two important questions remain unknown in this paper, which make

this work unreplicable. First, the author established a rule (decoding function) for

detector placement, that is, the further detector placement will have a certain overlap

with the existing detectors and no overlap at all with the self set. Undeniably, it is

really an optimal detectors placement rule. However, how can we verify whether the

detector is overlapped by all others? Second, this paper stated “the closer the volume

of the detector set represented in the chromosome is to the value of V ns, the better

the solution”. V ns is the volume of non-self space and can be calculated as V ns = 1-

V s. Now, we are concerned about the volume of the self set V s because we cannot

evaluate the fitness of the chromosome if V s cannot be calculated. Regretfully, this

paper didn’t show a solution to calculate V s. These problems in the existing works

motivate us to further examine this method in AIS area.

6.3 A Novel Approach: Near-deterministic Detec-

tor Generation

Negative Selection Algorithm (NSA) is modeled off the negative selection in the T -cell

maturation process that happens in the thymus and basically consists of two phases.
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First, the detector set is generated by eliminating those detectors that match any of

the self samples from a randomly generated candidate pool. Then, the new sample

is examined using the detector set. Each detector in the context of Real-valued NSA

is modeled as a hyperspheres having its own radius in addition to the location. The

earlier Real-valued NSA used constant-sized detectors [94,95]. To solve the scalability

limitation and well-known issues of “holes” when using the constant-sized detector

to cover non-self space, V-detectors [132] and Quadtree automatic detector genera-

tion [11] extended the detector representations to allow variable geometry. To date,

however, the deterministic generation mechanism for real-valued vector representa-

tion has not been reported yet. The overlapping of the detectors is totally out of

control using the existing random generation. Our efforts focus on finding the op-

timal location for the detector placement. The algorithm introduced in this section

demonstrates that the detector generation is no longer purely random-based and the

better performance can be achieved with fewer detectors.

6.3.1 Algorithm and Analysis

To take advantages of the recent NSA researches, our approach also generates hyper-

spheres-shaped and variable-sized detectors. However, the assignment of the radius

and center for each detector is our original contribution by sufficiently considering

the reliability and efficiency of the algorithm. The detector number in our algorithm

is controlled by the volume of the overlapping hyperspheres, which is estimated with

Monte Carlo Integration method. Before the estimated coverage reaches 100%, the

random points that don’t fall within any existing hyperspheres are considered as

potential candidates for the center of the next detector to be retained. To reuse these

“outside” random points at the same time when the coverage is being estimated,

which candidate should we select if there is more than one “outside” points? The

answer to this question is the one that is very foreign to the detectors that have been
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already included in the detect set. Fig. 6.1 can be used to explain how we find the

right candidate. The circles represent the retained detectors while the triangles stand

for the sampling random points in Fig. 6.1. These triangles denoted by the number

“1”, “2”, and “3” are the examples of the “outside” points. The distance between the

center of the detector and the random point will be computed during the estimate

to check if the random point falls within any existing hyperspheres. If the random

points are outside a hypersphere, the difference between the calculated distance and

the radius of the hypersphere can be easily derived during this process. We call it

foreign distance to distinguish with the matching distances we generally discussed.

The foreign distance to the nearest detector for each “outside” random point is kept in

record. When all observations (total random points to be used for volume estimate)

are checked with the detector set, the candidate (one of “outside” point) with the

largest foreign distance is considered very foreign to the existing detectors and is

finally selected for the next detector. The idea for determining very foreign candidate

is in fact partially borrowed from Brute Force Algorithm. As illustrated in Fig. 6.1,

random point a has the nearest foreign distance to detector A. Similarly, point b is

the nearest to the detector B and point c is nearest to the detector C. The random

point b has the longest foreign distance and thus is picked up for the location of next

detector placement, that is, the placement of the detectors in our approach relies on

the feedback from the estimate with Monte Carlo Integration method. To accurately

understand our approach, we would like to emphasize the difference between foreign

distance and matching distance. As seen in Fig. 6.1, the random point a has the

shortest matching distance to the detector B instead of detector A. However, our

algorithm record the foreign distance between the random point a and detector A

because it is the shortest foreign distance for random point a.

The pseudo-code listed in Fig. 6.2 gives more details about the coverage estimate

and the strategy of detector candidate selection we described above. Line 3 shows that
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Figure 6.1 Interpretation of Monte Carlo Integration estimate and detector
candidate feedback

the sample size of the estimate is controlled by estimate error (ε) and the confidence

level (δ). For all experiments conducted in this work, both parameters (ε and δ) are

fixed to 0.05 and 0.95, respectively. The larger samples are required to minimize the

estimate error and increase the confidence of the estimate. In this work, the random

points (line 6) are generated by using more uniformly distributed deterministic quasi-

random sequences because our previous experiments showed that quasi-random has

the potential to improve the performance of a negative selection algorithm [263]. The

loop between line 9 and line 17 shows how to calculate the nearest foreign distance

for a random sample while evaluating this sample with the existing detectors. Line

18 through line 21 updates the location that will be used to place the next detector

by referring to the best foreign distance. Finally, line 23 returns the total estimated

volume of the existing detector and the location feedback for next detector placement.

One of the major contributions in this chapter is the development of a new de-

tector generation scheme, which is outlined in Fig. 6.3. The most important control

parameter is the target coverage (c), which is used to control the detector number for

this algorithm. Although two parameters (maximum/minimum number of detectors)

are proposed to prevent premature termination or infinite loop of the algorithm, they
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Figure 6.2 Algorithm: Monte Carlo Integration (MCI) based coverage esti-
mate with feedback for next detector center
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are actually ignored in most applications by setting tmax to a larger number and tmin

to zero. The most important differences lie in line 14 through line 19. Rather than

being randomly assigned in most existing techniques, the location of the detector

placement is adopted from the feedback of Monte Carlo Integration method (line 19)

unless the estimate is failed by returning the coverage of 100% before the minimum

number of detectors is generated (line 12 and 13). When applying this algorithm, line

12 and 13 should be seldom executed in most applications. Because the candidate

based on the feedback from the coverage estimate is very foreign to the existing detec-

tors, this placement strategy has the potential to alleviate the overlapping between

the detectors in the detector set. Another feature of the algorithm is that it does

not explicitly use the principle of negative selection. Once the center of the detector

is determined, the detector is assigned a variable radius equivalent to the distance

between the detector and its closest self sample (line 3 through line 8, line 14). The

direct benefit of this feature is the enhancement of the operability and reliability of

the algorithm by removing the control parameter r self (self radius) that is generally

defined but very difficult to be adjusted in basic NSA and its variations. Next section

we will report our experiments to further explain why this parameter could be re-

moved and show that the removal of this parameter does not change the performance

of the algorithm. The algorithm normally converges under two conditions. First, the

convergence of the algorithm is occurred when the minimum number of detectors is

generated and the target coverage (c) is reached (line 17). Second, the algorithm is

converged when the limit of the detector number is reached in line 20. Informally, to

generate the detector set (D) for the collected subset (S) of the self set, the major

steps of the proposed detector generation scheme can be simplified as follows:

1. Pick a random point as the center of the first detector.

2. Assign a variable radius to the first detector. The radius is the distance from
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the center of the detector to the closest self sample.

3. Estimate the volume of the detector with Monte Carlo Integration method and

pick a sample point that does not fall within the detector and is very foreign to

the detector.

4. Generate the next detector by using the point returned from step 3 as the center

of the detector and assign it a radius like step 2.

5. Continue generate the remaining detectors by repeating step 3 and step 4.

6. The detector generation is terminated when the target coverage is reached. The

termination is also controlled by the preset limit (minimum and maximum) of

the detector number.

6.3.2 Comparison With Random-based Method

V-detector is one of the latest variations in the NSA family and has been proven that it

outperforms the original NSA [131,132]. The authors of V-detector pointed out that a

later “boundary-aware” version of V-detector with the estimate of hypothesis testing

solved the weakness of the termination condition in the earlier version of V-detector

to a large extent and would detect an anomaly more aggressively [134]. Our proposal

is developed on the basis of sufficient investigation of boundary-aware V-detector

and the estimate of hypothesis testing. It inherits the useful features of V-detector

but possesses its unique ideas. Table 6.1 summarized the most important differences

between NSA, V-detector and our proposed method. This section presents some

experimental results to illustrate these differences and demonstrate the properties

and advantages of the proposed method. The reported results are the average of

100 repeated runs for each parameter setting. The experiments with V-detector were

conducted by using the better version of V-detector: boundary-aware and hypothesis
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Figure 6.3 Near-deterministic detector generation algorithm
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testing cobundle [130]. As instructed by [131], the control parameter of self radius

(r self) in V-detector is set to the typical value of 0.1.

Influence of Different Estimate Methods on the Detector Number

The experiments were carried out with the famous benchmark Fisher’s Iris data [72]

and a biomedical dataset [2] to investigate the properties and differences of two esti-

mate methods: Monte Carlo Integration and hypothesis testing. The same methods

as in [261, 262] were used for data preprocessing and performance measuring. It is

worth noting that the number of detectors required in the proposed method to provide

near full coverage of the nonself is much smaller than the one that would be needed by

V-detector with the estimate of hypothesis testing. Table 6.2 shows that hypothesis

testing makes an unusual leap in the number of detectors from 51 to 50001 when

the parameter of target coverage is increased from 90% to near 100%. The results

in Fig. 6.4 and Fig. 6.5 show that the number of the detectors that is estimated by

Monte Carlo Integration increases as the control parameter of target coverage is set

to a larger value. These results coincide with the intuition that more detectors could

cover the larger proportion of the nonself space. The upside-down bell-like curve in

Fig. 6.6 reflects the fact that the estimate of hypothesis testing borrows the idea of

central limit theorem. Central limit theorem justifies that the distribution of can be

approximate to normal distribution when n is sufficiently large. The intrinsic limit of

hypothesis testing is inherited from two apparent sources of error in approximating

the binomial distribution to the normal distribution. As discussed in [133], the bino-

mial distribution is discrete and asymmetric (it is symmetric only if the probability

of one outcome is 0.5) while the normal distribution is continuous and always sym-

metric. Fig. 6.6 indicates that it is impossible for hypothesis testing to estimate fewer

detectors by reducing the value of target coverage below 50%. [133] claimed that it is

very likely that a large value of target coverage, for example, 90% or 99%, is needed.
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However, our experiments with V-detector found that the best results for both Iris

data and Biomedical data were obtained with the least number of the detectors when

the value for self radius is fixed to 0.1 and the target coverage is changed to 50%.

With these parameter settings, the detection rate and false alarm rate for Iris data

are 99.93% and 15.24%, respectively. For Biomedical data, the corresponding results

are 62.89% and 12.25%. When we increase the value for the control parameter of

target coverage, the more detectors are generated, as shown in Fig. 6.6 and Table 6.2.

Accordingly, the false alarm rate apparently raises but the detection rate changes

very slightly. Based on such observations, we are wondering whether the detecting

performance could be improved if fewer detectors are used. Unfortunately, there is no

way to do such a testing with hypothesis testing since the minimum number of detec-

tors has been reached when target coverage is set to 50%. Last but not the least, it

is also worth mentioning that the estimate of hypothesis testing is not so sensitive to

different applications, which are not meant to all applications but at least for Iris data

and Biomedical data we tested. The results in Fig. 6.6 and Table 6.2 indicate that if

the same value for the target coverage is set, the exactly same number of detectors

is estimated by hypothesis testing for Iris data and Biomedical data, although they

are totally two different data sets. This result may be caused by somewhat similarity

between Iris data and Biomedical data but the real reason remains unknown. On the

other hand, the estimate of Monte Carlo Integration produces the different detector

number for Iris data and Biomedical data. Fig. 6.5 demonstrates that such difference

is enlarged when the value for target coverage is beyond 95%.

Discussions on Control Parameters

The scheme of near-deterministic detector generation proposed in this chapter does

not follow the routine procedures that are used for the development of the algorithms

based on negative selection. It first decides the center of the detector and then
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Figure 6.4 The influence of different target detector coverage on the esti-
mate of the number of detectors using Monte Carlo integration based near-
deterministic detector generation
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Figure 6.5 The enlargement of the part of figure 1 showing the difference
of the number of detectors generated for biomedical data and iris data
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Figure 6.6 The influence of different target detector coverage on the estimate
of the number of detectors using hypothesis testing based boundary-aware
V-detector
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Table 6.2 Summary of the number of detectors from 100 repeated runs

Estimate method Nonself coverage
Average number of

detectors

Iris data Biomedical

data

MCI feedback

80.00% 3.17 3.25

85.00% 3.23 3.56

90.00% 3.71 4.28

95.00% 4.75 5.42

99.00% 8.35 10.65

99.50% 11.83 17.06

99.99% 39.20 56.46

Hypothesis testing

80.00% 26 26

85.00% 34 34

90.00% 51 51

95.00% 100 100

99.00% 500 500

99.50% 1000 1000

99.99% 50001 50001
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assigns the radius of the detector the distance between the detector and its closest

self sample. In fact, the rule for the assignment of the radius of the detector in our

method implicitly complies with the principle of negative selection and automatically

excludes all possible self matchings for the retained detectors. The detection phase

of the proposed algorithm is similar to basic NSA but each detector has its own

matching threshold (the detector’s radius). Self radius (rself ) is a control parameter

usually defined in the NSA to prevent the generation of self-matching detectors. If the

distance between a detector candidate and any self sample is less than the self radius

(r self), then such candidate will be eliminated. The training data is considered as a

collection instead of individual points and only a group of points instead of individual

self points can claim a region to be the self region in boundary-aware V-detector [129].

To implement this idea, the distance from the center of the detector candidate to the

nearest self point is directly assigned with the detector’s radius. These ideas are

adopted in the scheme of near-deterministic detector generation. Although the self

radius (r self) is still kept in boundary-aware V-detector, our experiments observed

that this parameter is almost useless to control the algorithm’s performance. Fig. 6.7

depicts the comparison of the ROC curves plotted from the experiments with Iris

data and Biomedical data. These experiments were done with various values of self

radius but Fig. 6.7 only display the results obtained with two typical values of self

radius (r self): 0.0 and 0.1. If r self = 0, the detection rate is always zero in basic

NSA. The values of 0.1 for self radius (r self) was recommended and very often used

to obtain better results in V-detector [129, 131, 132]. The results in Fig. 6.7 and

unreported experiments with other values of self radius showed that the algorithm’s

performance is extremely similar while the self radius is changed over a wide range

of values between 0 and 1. Let us think about the reasons behind these results. The

concrete role of the self radius (r self) in boundary-aware V-detector is to prevent the

generation of the detectors having the radius of less than r self. The same effectiveness
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