
v

Table of Contents

List of Figures .. vi
Chapter 1 Introduction .. 1

Coping with Multiple Treatment Microarray Data ... 1
Analysis of microarray data with transitive directed acyclic graphs 2
Content of Thesis .. 5

Chapter 2 Problem Definition ... 7
Predicting Potential Patterns from Gene Expression Data ... 7

Clustering further genes in patterns based on their magnitudes 8
Constructing a tool for analyzing microarray data using directed graphs 9

Chapter 3 Methods and Experiments .. 11
Generating synthetic gene expressions for predicting gene response patterns 11

Calculating distance between genes for hierarchical clustering 13
Designing the software: mDAG ... 14

Chapter 4 Results .. 16
Predictions about Potential Patterns ... 16

Clustering Results for Genes in Patterns .. 22
Features of mDAG .. 24

Chapter 5 Discussion .. 26

Simulation Method for Predicting Potential Patterns ... 26
Incorporating Traditional Clustering into Current Method .. 27

Develop the Next Version of mDAG ... 27
Chapter 6 Conclusion .. 28
References ... 30

Appendices .. 33

Appendix A. More about simulated data .. 34
Appendix B. More about hierarchical clustering .. 35
Appendix C. More about mDAG .. 37

Appendix D. Main algorithms of mDAG ... 42

vii

16. Average probabilities of patterns which is the same with initial patterns for 30 more

replicate ... 21

17. Average probabilities of patterns which is the same with initial complete patterns for

30 more replicate... 22

18. A result for clustering 10 genes in the same pattern ... 23

19. A result of clustering of genes in a pattern with separated groups of genes. 24

1

Chapter 1

Introduction

Gene expression analysis with DNA microarrays has become one of the mainstreams

in the field of molecular biology. In living organisms, gene expression is the process that

uses information from a gene to synthesize a functional gene product (protein or

functional RNA). Gene expressions are often measured by DNA microarrays, one of the

most popular technologies in this research. In a microarray experiment, expression levels

of thousands of genes are simultaneously measured and the data are used to study the

effects of drugs or diseases.
1

While obtaining gene expressions is no longer a challenge in genomics research,

analysis and interpretation of microarray data is still a major challenge (Subramanian et

al., 2005). There are many methods proposed to analyze microarray data. Typically, the

analysis of microarray data is divided into three steps: (1) selecting significant genes for

further analyses, (2) analyzing these genes with clustering or classification methods and

(3) interpreting gene clusters or classes to extract biological meaning from them (Phan et

al., 2009). Most of current approaches often consider these steps separately and neglect to

take advantage of results from the other steps. Therefore, comprehensive methods that

take into account more than one step are expected to help understand more from the data.

Coping with Multiple Treatment Microarray Data

In many cases, researchers have to work with gene expression data that involve many

chemical compounds (or treatments) (Sutter et al., 2002; Sawers, Liu, Anufrikova,

Hwang, & Brutnell, 2007). Moreover, because of biological variations in cells, people

often need several sets of measurements of gene expressions (Yang, Yang, McIndoe, &

1
 http://www.bioinformaticstutorials.com/?p=8 - last visited 07/2011

http://www.bioinformaticstutorials.com/?p=8

2

She, 2003). Each set of measurement is called a replicate. Microarray data with multiple

treatments and multiple replicates are often stored in several formats such as GCT, RES

or PCL.
2
 Figure 1 shows a gene expression dataset with 2 treatments and 4 replicates per

treatment in GCT format.

 (Treatment group 1) (Treatment group 2)

 Probe Set Gene information CON1 CON2 CON3 CON4 TREAT1 TREAT2 TREAT3 TREAT4

 1369943_at Rn.10 2177.696 1045.617 1941.677 1235.957 1691.027 1032.806 1688.829 1049.005

 1367657_at Rn.1000 8434.484 9746.999 7945.054 9150.292 11070.688 7135.596 11664.801 7243.845

 1368270_at Rn.10002 19.792 19.511 19.761 14.282 14.486 18.669 20.033 14.832

 1372094_at Rn.100021 996.149 867.428 1035.417 849.577 1071.943 1095.091 985.208 866.036

 1399029_at Rn.100022 102.423 118.124 77.588 107.665 103.208 130.816 87.883 103.508

 1376849_at Rn.100022 217.969 168.746 149.847 170.000 241.984 148.219 145.839 182.011

 1397005_at Rn.100042 6.006 6.366 6.387 6.543 6.351 7.211 6.320 7.459

Figure 1. A gene expression dataset with 1 control group and 1 treatment group.

In general, it requires further efforts to analyze and interpret gene expressions with

multiple treatment microarray data (tens or even hundreds of chemical compounds). If

there will not be enough replicates, it would be difficult to draw statistically reliable

conclusion from the data (Pan & Le, 2002). That lack of replicates may lead to

misleading/uncertain results.

Analysis of microarray data with transitive directed acyclic graphs

Phan et al. (2009) proposed a method for clustering multiple treatments gene

expression data with transitive directed acyclic graph (tDAG). tDAGs are graphical

representations of patterns of outcomes of statistical comparisons of gene expression

profiles. Concretely, given a gene expression profile, perform all possible pairwise

comparisons based on two-sided hypotheses we obtain a set of possible outcomes. These

outcomes can be represented as a tDAG. Although based entirely on a statistical

2
 http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats - last

visited 07/2011

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats

3

construction, these outcomes reveal meaningful biological information about the tDAG

that the genes fall into. It was shown that this method deals with multiple treatment

microarray data better than other popular clustering methods such as hierarchical

clustering or k-mean. This method has been applied and found useful in identifying and

differentiating genes sharing similar functional pathways (Tran et al., 2009).

In this work, graphical patterns are determined using Wilcoxon rank-sum test to do

pairwise comparisons for treatments, where:

 Vertices consist of the treatments T1, T2, …, Tn

 Edges represent the outcomes of Wilcoxon rank-sum tests:

 “T1 → T2” stands for the outcome T1 > T2 which means that gene is expressed

significantly more under T1 than under T2.

 “No edge between T1 and T2” stands for the outcome T1 ~ T2 which means that

there is no statistical difference of expression of the gene under T1 and T2.

Each set of outcomes corresponds to an acyclic transitive closure with n vertices, that

is, these patterns are transitive directed acyclic graphs. In additional, these graphs can be

contractible or non-contractible. We say that a graph is contractible if (1) it is a complete

graph or (2) it can be contracted to a complete graph that preserves all vertex-edge

relationships in the original one. Phan, George, Tran, & Sutter (2008) showed that there

is a relationship of the sample size problem with a property of directed graphs known as

contractibility.

Figure 2 shows two graphical representations of gene response to 4 treatments (CON,

TREAT1, TREAT2, and TREAT3) with a non-contractible graph (A) and a contractible

graph (B). In particular, graph (A) shows a pattern with 1 control and 3 treatments where

4

gene is expressed significantly more under TREAT2 than under TREAT1, more under

TREAT1 (TREAT2, TREAT3) than under CON and there is no statistical difference of

expression of the gene under TREAT1 (TREAT2) and TREAT3. In graph (B), there is

another edge from TREAT3 to TREAT1, which means gene is expressed significantly

more under TREAT3 than under TREAT1. The left graph can be contracted to the right

graph by grouping 2 equivalent vertices TREAT2 and TREAT3.

Figure 2. A non-contractible graph (A) and a contractible graph (B).

With such graphical presentation of gene responses, the analysis of microarray data is

done through three steps: (1) selecting significant genes using Kruskal-Wallis with false

discovery rate controlled; (2) determining the pattern of response of each gene using

Wilcoxon rank sum tests to detect how the gene responds to all pairs of treatments; and

(3) grouping genes with similar patterns into the same cluster. In addition, similar

patterns are further placed into "meta" clusters. For future reference of this method, we

call this method MPC (multiple pairwise comparisons). In the rest of this thesis, we

extend this method to analyze further patterns as well genes in such patterns to extract

meaningful information and make more reliable predictions.

 TREAT1 CON

 TREAT2 TREAT3

 TREAT1 CON

 TREAT2 TREAT3

 TREAT

1
 CON

 TREAT2 TREAT3

(A) (B)

5

Content of Thesis

The first problem studied is the contractibility of patterns when the number of

replicates increases. The gene expression patterns obtained with more replicates might

differ from each other considerably. Our objective is making predictions about probable

patterns by simulating gene expressions based on real data with few replicates. We show

that solving these problems leads us to meaningful results. It helps us predict whether

potential pattern of genes are certain when there are more replicates. From this, we can

quantify the relationship between the contractible patterns and sample size (i.e., number

of replicates). It allows people predict how many samples needed for a non-contractible

graph to become contractible, which help determine the necessary number of microarrays

needed to get reliable results.

In the second problem, we consider the magnitude of gene expression data, which is

ignored in the first problem. Although genes in patterns share common characteristics

that reflect their responses with treatments, they are might different each other on their

expression levels. Incorporating magnitude of expression data into the MPC method

might provide us meaningful results. In the second problem, we use hierarchical

clustering to analyze genes in patterns further using fold information between expression

profiles of treatments. We also create a tree view of clusters to help people analyze

further results.

The last problem in this thesis is building a software package for analyzing

microarray data. This software is called mDAG. This web-based application allows users

upload gene expression datasets. Analysis is done through steps in MPC method. User’s

requests are scheduled to run in such a way that it does not overload the server. The

6

pattern of response of any gene is represented visually. mDAG is implemented using

Python, MySQL and web2py – a free open source framework for development of web-

based applications.
3

3
 http://web2py.com/ - last visited 07/2011

http://web2py.com/

7

Chapter 2

Problem Definition

First, we present a formulation for the problem of predicting potential patterns from

gene expression data using simulation. Second, we describe a method for clustering gene

patterns based on fold information. Finally, we consider requirements of a tool for

analyzing microarray data that implement the MPC method. We also consider some

related problems for further discussions about this field of interest.

Predicting Potential Patterns from Gene Expression Data

Phan et al. (2008) showed that, with large numbers of replicates, more contractible

patterns will be observed hence we can get reliable conclusions. However, researchers

often deal very few numbers of replicates (due to cost). In this situation, researchers

might get uncertain results due to insufficient information. For example, Figure 3 (a)

shows a non-contractible observed pattern when the number of replicates is insufficient.

If we have a sufficient number of replicates, (a) might become either pattern (b), (c) or

(d), which are contractible.

Figure 3. A non-contractible pattern (a) and its possible derived patterns (b, c, d).

8

The question is, which contractible patterns can a non-contractible pattern become to

when more replicates are added? Formally, given a non-contractible pattern G, let SG be

the set of all contractible patterns from which G can become. We want to calculate the

probability pi that G will become Gi ∈ SG when replicates are sufficiently large.

Determining exactly and efficiently SG or |SG| might be a hard problem because the

numbers of ways to add more edges are exponential. However, solving this may help

scientists to determine whether certain response patterns are reliable even when sample

size is not sufficient.

One of the feasible ways to predict these is using synthetic data to produce more

replicates and observe the results. By simulating synthetic gene expressions based on real

samples (with few replicates), we can make predictions about patterns that might have

been generated for genes with non-contractible patterns. We will have various models of

simulation of gene expression with various assumptions including normal distribution of

gene expressions as well as non-parametric methods; for example using methods similar

to (Albers, Jansen, Kok, Kuipers, & Hijum, 2006).

In this thesis, the synthetic gene expression data has a Gaussian distribution. We

calculate mean and standard deviation for this distribution from sample means and

sample standard deviations of the real data. After that, we perform experiments on the

data and make predictions based on the results.

Clustering further genes in patterns based on their magnitudes

As previously mentioned, one of remaining problems of the MPC method is the

differences in magnitude of gene expressions. For example, consider two genes in Figure

4, although they belong to the same pattern with CON > TREAT1 > TREAT2, the

9

magnitude of CON is 10-fold the one of TREAT1 in gene A but only 2-fold the one of

TREAT2 in gene B. This maybe leads to different properties between genes.

Figure 4. An illustration of two genes with the same graphical pattern but different in their

magnitudes. The numbers in brackets represent the magnitudes of treatments.

The problem is how to incorporate fold information between gene expressions of

treatments into MPC method. This leads to another approach where we consider patterns

as weighted graphs instead of non-weighted graphs. In this model, each edge has a weight

which is the fold-value between gene expression profiles of treatments. One of

advantages of this approach that is we can classify further genes with the same patterns

into subclasses, which might bring us another useful layer of information.

We implemented an algorithm based on hierarchical clustering with several metrics

(Baxevanis & Ouellette, 2006; Deonier, Tavare, & Waterman, 2005; Gopal, Haake,

Jones, & Tymann, 2006). We created a tree view of clusters to allow users visualize

clustering results.

Constructing a tool for analyzing microarray data using directed graphs

As a web-based application, mDAG needs to take as input microarray data from users

over the web. After that, it selects significant genes, performs statistical analysis, and

(100)

(1)

CON

TREAT2

TREAT1

(A)

(10) (20)

(2)

CON

TREAT2

TREAT1

(B)

(10)

10

places them in appropriate patterns. Analysis is done in three steps: (1) significant genes

are selected using Kruskal-Wallis with false discovery rate controlled; (2) the pattern of

response for each gene is determined using Wilcoxon rank sum tests to detect how the

gene responds to all pairs of treatments and (3) genes with similar patterns are placed into

the same cluster. Similar patterns are further placed into "meta" clusters. The details of

this process can be found in Phan et al. (2009).

To manage requests and results properly, mDAG needs a “Scheduler” program.

Scheduler uses server resources effectively and schedules users’ requests. Submitted

requests are scheduled to run in a way that it does not overload the server. The Scheduler

needs to call an “Executer” program, which is responsible for analyzing datasets. The

Executer updates status of the requests and performs the MPC method.

Data sets must be a text file in GCT format
4
 with two restrictions: (1) missing

expression value is not allowed for expression data and (2) treatment groups are grouped

together: the first group is Control group; the second group is the first treatment group;

the third group is another treatment group; and so on. The software also needs to

represent results in such a way that they are convenient for people to analyze further them

as well as link them to external resources.

4
 http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats - last

visited 07/2011

http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Data_formats

11

Chapter 3

Methods and Experiments

In this section, we present a method for generating synthetic gene expression based

on real data and analyzing them with MPC method. We also describe experiments for

predicting potential patterns from synthetic data. Second, we describe a method for

calculating distance between genes for hierarchical clustering based on fold information.

Last, we design a workflow for mDAG that satisfies all requirements in section 2.3.

Generating synthetic gene expressions for predicting gene response patterns

As mentioned in previous section, there are various models of simulating gene

expression with various assumptions including normal distribution of gene expressions as

well as non-parametric methods. In this study, the assumption is synthetic gene

expression data has a Gaussian distribution. Means and standard deviations for this

distribution are calculated from the real data.

Suppose a gene has n replicates for each treatment. We used these replicates to

generate k additional replicates for this treatment group with parameters (μ, σ) that are the

sample mean and standard deviation of the real replicates. Concretely, assume that we

have a gene with non-contractible pattern p from a real expression profile with n

replicates (x1, x2 … xn). The p is obtained using Wilcoxon rank-sum test for all pairwise

comparison. Do the following steps:

1. Generating a synthetic expression profile (xn+1, xn+2 … xn+k) for k more replicates.

Assume that the synthetic data set has normal distribution with parameters (μ, σ) are

the sample mean and the sample standard deviation of the real data set.

12

2. Using Wilcoxon rank-sum test for the data (x1, x2 … xn, xn+1, xn+2 … xn+k), we obtain a

pattern p1.

3. Similarly, for another synthetic expression profile (x’n+1, x’n+2 … x’n+k), we obtain

another pattern p2, and so on.

From this result, we can determine a list of observed patterns and their frequencies

(for every sample) for all synthetic replicates as illustrated in Figure 5. For each gene,

with M samples, we can obtain the list of patterns p1, p2 … pm for each more synthetic

replicate. Some patterns among them probably are the same, therefore the number of

distinct patterns often less than M. Notice that in one experiment, the synthetic samples

for previous replicates are retained for next samples. These results can be represented as

matrices.

Figure 5. An illustration of observed patterns and their frequencies.

Based on this method, we can design an experiment as the followings:

i. Determining the pattern for each gene with real data. Call them initial patterns for

each gene. Some of them are contractible, the others are non-contractible.

N genes

K (synthetic) replicates

N genes

K (synthetic) replicates
Analyzing

M samples
Set of patterns

13

ii. Generating synthetic data with 30 more replicates for all genes with 100 samples for

each more replicate. In each sample, the synthetic samples for previous replicates are

retained for next replicates.

iii. Using Wilcoxon rank-sum test to obtain patterns for each gene for each sample and

each replicate.

iv. Collecting all data as frequency matrices for observed patterns. Representing

patterns in frequency charts to consider their behavior.

After all, we can perform necessary calculations on this empirical data to produce

useful predictions.

Calculating distance between genes for hierarchical clustering

In this section we describe a method to calculate distance between genes in pattern

based on fold information of gene expression data. First we need to compute the

“representative value” of treatments and then we can calculate the fold-value between

treatments. The distance between 2 genes is calculated based on their fold-values.

If there are k treatments (including control) with several replicates, then each gene

can be represented as a vector of k treatments: Gi = (T1, T2… Tk) where each treatment is

a vector with n values (for n replicates): Ti = (r1, r2… rn). Then, the “representative

value” of each treatment is computed as normalized norm L1 (mean) of Ti
5
. From this, we

can compute the fold-value between treatments as follow: Fi = {f (T1, C), f (T2, C), f (T1,

T3), f (T2, T3)} where f is fold-function. The fold-value indicate the differentiate genes in

the same pattern. Here we ignore edges between unrelated vertices.

Figure 6 illustrates the representative value for expression profiles of treatments and

fold-value between them for a gene with its pattern. With this distance, we can apply a

5
 http://mathworld.wolfram.com/L1-Norm.html - last visited 07/2011

http://mathworld.wolfram.com/L1-Norm.html

14

clustering method to analyze genes in patterns further. We elected to use hierarchical

clustering with several metrics and linkage criteria.

Figure 6. Representative value for expression profiles of treatments and fold-value between them.

The numbers in brackets represent the magnitudes of treatments. The numbers in square brackets

represent the fold-value between treatments.

Designing the software: mDAG

In this section, we design a Scheduler (Figure 7) that scheduled submitted requests to

run in such a way that they do not overload the server. There are often many requests at

the same time and Scheduler need to allow only some processes to run. Numbers of

processes are determined based on existing resource. In this software, we set a fixed

number of requests as a threshold and allow more requests if resource still enough. The

following is the main responsibilities of the Scheduler:

i. When a request is sent to server, the Scheduler check the running requests and

determine whether allowing more requests to run. Requests are analyzed

respectively in incoming-time order.

ii. Status of requests includes "Waiting" (uploaded, not analyze yet), "Running" (is

being analyzed), "Completed" (analyzed, there is result) or "Error" (there are errors

[1.4283]

[1.4657] [1.2610]

[1.2940]

(840.2705) (1087.3076)

(862.2923) (1231.5901)

CON TREAT1

TREAT2 TREAT3

15

when analyzing the data, for example, no gene is significantly differentially

expressed or the data format is not conformable with the program).

iii. Call Executer program to analyze the dataset. Executer update status of the request

to Running, Completed or Error, perform MPC method to produce results. The

Executer need to call Scheduler after finish a request.

Figure 7. Sequence diagram of the Scheduler program in mDAG

The MPC clustering methods had been implemented in Phan et al. (2009). With some

modifications, it is incorporated into mDAG as a part of Executer. More detail about

MPC method can be found in Phan et al. (2009). Some codes (in Python) for this method

can be found at http://binf2.memphis.edu/ashutosh/pythoncodes.html - last visited

07/2011.

http://binf2.memphis.edu/ashutosh/pythoncodes.html

16

Chapter 4

Results

Predictions about Potential Patterns

We implement a program in Python for obtaining the list of observed patterns (with

synthetic data) and their frequencies for all replicates and samples. Another module is

used to analyze them for obtaining necessary results. We use a dataset from Phan et al.

(2009), which has 12906 genes, 4 treatments (include control) with 5 real replicates per

treatment. After generating synthetic data with 30 more replicates for all genes with 100

samples for each more replicate, the genes in such patterns are analyzed to determine the

pattern for each sample and each replicate. Finally, we collect all data as frequency

matrices for observed patterns and analyze them for further studying.

Figure 8 shows an analysis on a gene with initial non-contractible pattern from which

several contractible patterns are predicted. The total of probability of all patterns (shown

in different colors) per replicate is 1. Larger portions mean those patterns are more likely

observed from the non-contractible pattern. After using about 20 synthetic replicates, 3

contractible patterns emerge as most likely from a non-contractible pattern.

Figure 9 shows average entropy of genes. The entropy for each replicate was

calculated from the frequencies of observed patterns. Entropy decreases when we have

more replicates show that divergence of patterns decreases.

From Figure 8 and Figure 9 we can observe the trend of changes of response of a

gene in a non-contractible pattern when the sample size increases.

Last, Figure 10 shows the entropy boxplot for each more replicate of this gene.

17

Figure 8. An analysis on a gene with non-contractible pattern.

Figure 9. Entropy plot (on average) for the analysis in Figure 8.

Figure 10. Entropy boxplot for the analysis in Figure 8.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

@111122
@011222
**011221
@011211
@011122
@011121
@011111
@010221
@010121
**001222
@001221
@001211
**001122
@001121
@001111
**000222
**000221
@000211
**000122
@000121

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

18

In the rest of section, we present predictions about the patterns. These predictions

based on calculating entropy and/or probability of potential patterns.

Synthetic replicates help predict potential patterns of a gene. For genes in both

contractible and non-contractible patterns, several patterns are most likely to be observed.

Entropies are reduced when more replicates are added (Figure 11).

Figure 11. Average entropies of patterns of all genes for 30 more replicate.

Predicted patterns are likely contractible. Most of potential patterns are

contractible patterns: probabilities of contractible patterns increase to 1 (Figure 12).

Because of the result from section 4.1.1, potential patterns converge to several ones, so

when we have more replicate genes are distributed into several contractible patterns.

19

Figure 12. Average probabilities of contractible patterns for 30 more replicate.

Predicted patterns are likely to be extensions of initial patterns. Most of potential

patterns are supper patterns of the initial patterns (with 5 real replicates): probabilities of

contractible patterns increase to 1 (Figure 13). Again, because of the result from section

4.1.1, potential patterns converge to several ones, so when we have more replicates genes

were distributed into several supper patterns (patterns that are extensions of initial

pattern).

Moreover, because of the result from sections 4.1.2 and 4.1.3, predicted patterns are

likely to be contractible extensions of initial patterns, so when we have more replicates

genes were distributed into several contractible supper patterns.

21

Figure 15. Average probabilities of patterns from genes with initial non-contractible patterns for

30 more replicate

Potential patterns are the same with initial patterns in contractible genes than

non-contractible genes (Figure 16).

Figure 16. Average probabilities of patterns which is the same with initial patterns for 30 more

replicate

22

In particular, most potential patterns of genes with complete patterns are the same

with initial patterns, their probabilities very close to 1 (Figure 17).

Figure 17. Average probabilities of patterns which is the same with initial complete patterns for

30 more replicate

Clustering Results for Genes in Patterns

To cluster genes in patterns, we implement hierarchical clustering in Python with

several metrics and linkage criteria. About metrics, we use the Euclidean distance and

Pearson correlation coefficient. We implement single-linkage/complete linkage and

average linkage. All criteria are implemented in such a way that they compute distance

update step in running-time O(1). The distance formula for this algorithm is described in

section 3.2.

About data structure, we store each node as a Vector and maintain a “count” field in

each tree node, which holds the number of leaf nodes which belongs to it in hierarchical

tree. To improve running-time, we store only lower triangular part of distance matrix.

23

The result of clustering is visualized as a tree with labels to convenient for analyzing

them further. The labels include ID of derived clusters and number of genes in them,

name and ID of genes in input data.

To convenient for manipulating on clusters, we implement functions that allow user:

- Draw tree view into an image file.

- Label nodes with necessary information.

- Extract a set of clusters with distance less than a given value.

- Extract a given number of clusters.

- Return all elements of a cluster

Figure 18 represents a result of clustering of 10 genes in pattern 222221 with 4

treatments and 5 replicates per treatment, using Euclidean distance with average linkage.

Figure 18. A result for clustering 10 genes in the same pattern

Inner nodes: the upper number is cluster’s id and the lower number (in brackets) is total number

of genes in the cluster. Leaf nodes: gene’s name and gene’s id (in brackets) in the input dataset.

Figure 19 represents result of clustering 168 genes in pattern 122221 with 4

treatments and 5 replicates per treatment, using Euclidean distance and average linkage.

We can see some groups of genes are relatively separate. From this, there are some

remarkable observations:

24

i. Effect of number of replicates: clustering vary through number of replicates (from

non-contractible pattern to contractible pattern).

ii. Effect of metrics: results with Euclidean distance differ much from Person

correlation coefficient.

iii. Effect of linkage criteria: results with average linkage (and complete linkage) differ

much from single-linkage.

 From the clustering result, we can extract groups for analyze further.

Figure 19. A result of clustering of genes in a pattern with separated groups of genes.

Features of mDAG

The application is implemented using Python, MySQL and web2py. User can use one

of the sample data sets that are provided with the application to submit a request for

analysis or use their own properly-formatted dataset.

25

Users can choose significance level p-value for the analysis (default value is 0.05).

They can choose number of replicates for all treatments of the dataset. Finally, user can

enter description of the request if needed (more about dataset, parameters or others).

After a request is finished, the user can check information about the requests and

results, including dataset file and request description, status of the request, request upload

time, analyzing start time, and finish time.

A request description includes all user information uploaded: number of probe sets,

number and name of treatments with replications, significant level, replication number

for each treatment and request description (if it exists). Users can download datasets.

Status of the request is one of the following: Waiting, Running, Completed, and

Error. If status is “Completed”, users can check the analyzing result. If status is “Error”,

users can re-run the corresponding dataset. Users also can re-run the dataset for dataset

with “Completed” status.

Finally, users can remove the request. With "Waiting" or "Error" status, the system

removes the corresponding dataset. With "Running" status, the system removes the

corresponding dataset and stops the analyzing process. With "Completed" status, the

system removes both the corresponding dataset and analyzing result.

26

Chapter 5

Discussion

Simulation Method for Predicting Potential Patterns

Simulated data helps us to find out useful results that are conformable with theoretical

predictions. However, there are two problems we currently face with this approach.

First, the simulation method takes much time to run. In many cases, there are a large

number of samples as well as replicates need to test, hence the complexity of algorithms

is very important. We exploited some techniques to improve its performance. For

example, we use dynamic programming for computing exact p-values of Wilcoxon rank-

sum test based on (Ross, 2002) (during the process of determining graphical patterns) and

show that it is effective. Nevertheless, simulating synthetic expressions of several

thousand genes can take up much time on regular desktops. For example, it takes two

more than a week of computing to perform even with only 100 samples and 30 replicates.

We exploited high performance cluster to improve the runtime but it still need to improve

more, such as using parallel program.

Second, determining appropriate amount of synthetic replicates to generate for each

gene is quite difficult. Generating too many synthetic replicates can be both

computationally expensive and causing over-fitting results. This leads us to another

problem: design computational efficient methods for selecting the right amount of

synthetic replicates to predict probable contractible patterns from non-contractible

patterns. However, this arises some computational questions that are non-trivial.

There are some interesting theory questions in this problem. First, can we predict

observable patterns (or the probabilities of them) for more replicates without synthetic

27

data? For example, can we construct a mathematical formula to determine SG or |SG| for a

given graph G efficiently? Although this question possible efficiently determined, the

similar questions comparing G and another pattern G’ can be computationally hard

(Phan, 2010). For example, given a non-contractible pattern G and another pattern G’, it

is NP-hard to compute the minimum distance between a member of SG and a member of

SG’ (Blin et al., 2007; Fu & Jiang, 2007). What this implies is that given two observed

patterns, which happen to be non-contractible, it is computationally hard to find out their

closest distance if we were to have sufficient replicates.

Incorporating Traditional Clustering into Current Method

Besides the hierarchical clustering in this thesis, we developed a program to

implement k-mean method for clustering genes in patterns. These methods were

implemented with several distance measures and linkage criteria. One of the next works

is incorporating this method into MPC method. We hope that it can bring us a

considerable improving for the results from MPC method.

Develop the Next Version of mDAG

In the future we plan to integrate the results from the simulation method as well as

some other software into mDAG. From this, users can make predictions with their

datasets that have few replicates. The results will be presented on a web-based interface

so that people can study them further.

28

Chapter 6

Conclusion

We showed that the simulation is useful to quantify the relationship between the

contractible patterns and sample size (i.e., number of replicates or number of microarrays

needed to get reliable results). By simulating synthetic gene expressions based on real

data with few replicates, we can predict the potential patterns of a given gene with limited

number of replicates. This may help scientists to determine whether certain response

patterns are reliable even when sample size is not sufficient. Moreover, by analyzing the

empirical datasets from synthetic data, we can predict how much more samples needed

for non-contractible graphs to become contractible. From this point, we showed that there

is a relationship between “contractible” patterns and the necessary number of replicates

needed to get reliable results. This may help using a necessary number of microarrays.

Besides the variance of response that is exploited in the MPC method, we also

consider the magnitude of gene expression. We use hierarchical clustering to cluster

further genes in patterns where the distance is the fold information between expression

profiles of treatments. The result from this method can be used to study further genes in

patterns as well as improve the MPC method. We showed that this might produce another

meaningful layer of information. We also create a tree view of clusters with support

methods to convenient for analyzing further results.

As an application of the method, the mDAG software was constructed to provide a

tool for user analyze microarray data with multiple treatments. It implements the MPC

method that analyzes microarray data with multiple treatments and multiple replicates,

using directed graphs. As a web-based application, mDAG allows users to upload

29

microarray data in GCT format through a web interface. From this data, the application

performs calculations to assign graphical patterns to genes and outputs images and textual

data for further analyses. mDAG is implemented using Python, MySQL and web2py.

In the future, we plan to analyze further properties of observed patterns from

synthetic data as well as perform analysis with datasets which have more treatments.

(Baldi, & Brunak, 2005; Gopal et al., 2006) provided some useful methods. Some other

sources, such as GO
6
 or GeneMania

7
 can be the useful information sources. We also

plan to study theoretical aspects of the problem, including the predictions of potential

patterns.

6
 The Gene Ontology project: http://www.geneontology.org/ - last visited 07/2011

7
 The GeneMANIA project: http://genemania.org/ - last visited 07/2011

http://www.geneontology.org/

30

References

Albers, C. J., Jansen, R. C., Kok, J., Kuipers, O. P., & Hijum, S. A. van (2006). Simage:

simulation of dna-microarray gene expression data. BMC Bioinformatics, 7:205.

doi: 10.1186/1471-2105-7-205.

Alon, N., & Spencer, J. H. (2008). The Probabilistic Method (3rd ed.). New Jersey: John

Wiley and Sons.

Augen, J. (2004). Bioinformatics in the Post-Genomic Era: Genome, Transcriptome,

Proteome, and Information-Based Medicine (1st ed.). Addison-Wesley.

Baldi, P., & Brunak, S. (2001) Bioinformatics – The Machine Learning Approach (2nd

ed.). Massachusetts: The MIT Press.

Baxevanis, A. D., & Ouellette B. F. F. (Eds.) (2005). Bioinformatics – A Practical Guide

to Analysis of Genes and Proteins (2rd ed.). John Wiley & Sons.

Blin, G., Blais, E., Hermelin, D., Guillon, P., Blanchette, M., & El-Mabrouk, N. (2007).

Gene maps linearization using genomic rearrangement distances. J Comput Biol,

14(4), 394–407. doi: 10.1089/cmb.2007.A002.

Brinkmanm, G., & McKay, B. D. (2002). Posets on up to 16 points. Order, 19, 147–179.

Datta, S., & Datta, S. (2006) Evaluation of clustering algorithms for gene expression

data. BMC Bioinformatics, 7(Suppl 4), S17. doi:10.1186/1471-2105-7-S4-S17

Deonier, R. C., Tavare, S., & Waterman, M. S. (2005). Computational Genome Analysis

– An introduction. New York: Springer Science+Business Media.

Dudoit, S., Shaffer, J. P., & Boldrick, J. C. (2003) Multiple Hypothesis Testing in

Microarray Experiments. Statistical Science, 18(1), 71-103.

Fu, Z. & Jiang, T. (2007). Computing the breakpoint distance between partially ordered

genomes. Journal of Bioinformatics and Computational Biology, 5(5), 1087–

1101.

Goeman, J. J., & Mansmann, U. (2008) Multiple testing on the directed acyclic graph of

gene ontology. Bioinformatics, 24(4), 537–544. doi:

10.1093/bioinformatics/btm628.

Gopal, S., Haake, A., Jones, R. P., & Tymann, P. (2008). Bioinformatics – A Computing

Perspective (1st ed.). McGraw-Hill Higher Education.

Gronau, I., & Moran, S. (2007). Optimal Implementations of UPGMA and Other

Common Clustering Algorithms. Journal Information Processing Letters, 104(6)

31

Hulshizer, R. & Blalock, E. M. (2007). Post hoc pattern matching: Assigning significance

to statistically defined expression patterns in single channel microarray data. BMC

Bioinformatics 8, 240.

Kerr, G., Ruskin, H. J., Crane, M. & Doolan, P. (2008). Techniques for clustering gene

expression data. Computers in Biology and Medicine, 38(3), 283–293. doi:

http://dx.doi.org/10.1016/j.compbiomed.2007.11.001.

Pan, W., Lin, J., & Le, C. T. (2002). How many replicates of arrays are required to

detect gene expression changes in microarray experiments? A mixture model

approach. Genome Biology, 3(5).

Phan, V., George, E. O., Tran, Q. T., & Sutter, T. (2008). Toward a combinatorial

approach to the sample size problem in multiple-treatment microarray studies.

2008 International Conference on Bioinformatics and Computational Biology

(BIOCOMP 2008), 175–181.

Phan, V., George, E. O., Tran, Q. T., Goodwin, S., Bodreddigari, S., & Sutter, T.R.

(2009). Analyzing microarray data with transitive directed acyclic graphs. Journal

of Bioinformatics and Computational Biology, 7(1), 135–156.

Ross, M. S. (2002). Simulation (3rd ed.) San Diego: Academic Press.

Sato, K., Mituyama, T., Asai, K., & Sakakibara, Y. (2008). Directed acyclic graph

kernels for structural rna analysis. BMC Bioinformatics, 9, 318–318. doi:

10.1186/1471-2105-9-318.

Sawers, R. J. H., Liu, P., Anufrikova, K., Hwang, J. T. G., & Brutnell, T. P. (2007). A

multi-treatment 15 experimental system to examine photosynthetic differentiation

in the maize leaf. BMC Genomics 8:12. doi: 10.1186/1471-2164-8-12

Shen, Y., Sun, W., & Li, K. (2010). Dynamically weighted clustering with noise set.

oinformatics,), 26(3), 341-347. doi: 10.1093/bioinformatics/btp671

Subramanian, A., Tamayo B., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, …

Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based

approach for interpreting genome-wide expression profiles. PNAS, 102(43). doi:

10.1073/pnas.0506580102

Sutter, T. R., He, X. R., Dimitrov, P., Xu, L., Narasimhan, G., George, E. O., … Kensler

T. W., (2002). Multiple comparisons model-based clustering and ternary pattern

tree numerical display of gene response to treatment: Procedure and application to

the preclinical evaluation of chemopreventive agents. Molecular Cancer

Therapeutics. 1(14), 1283–1292.

32

Tran, Q. T., Xu, L., Phan, V., Goodwin, S., Rahman, M., … Sutter, T. R. (2009).

Chemical genomics of cancer chemopreventive dithiolethiones. Carcinogenesis,

30(3), 480-486.

VanderWeele, T. J., & Robins, J. M., (2007. Directed acyclic graphs, sufficient causes,

and the properties of conditioning on a common effect. American Journal of

Epidemiology, 166(9), 1096–1104. doi: 10.1093/aje/kwm179.

Yang, M., Yang, J., McIndoe, R., & She, J. (2003). Microarray experimental design:

power and sample size considerations. Physiology Genomics, 16(1), 24–28. doi:

10.1152/physiolgenomics.00037.2003

Yeung, K. Y., & Ruzzo, W. L. (2001). Principal component analysis for clustering gene

expression data. Bioinformatics, 17(9), 763–774. doi:

10.1093/bioinformatics/17.9.763.

33

Appendices

34

Appendix A. More about simulated data

Figure 1A shows a number matrix for observed patterns for through replicates of one

non-contractible pattern (000011) with synthetic data. This pattern has 6 genes. There are

30 more synthetic replicates (the columns) and 25 observed patterns (the rows) for all

replicates. Many of them “disappear” when the number of replicates is enough large.

When the numbers of replicates come up to about 20, four of them, that all are

contractible patterns, dominate the others. In the figure, the patterns with ** mark are

contractible while the ones with @ mark are non-contractible.

Figure 1A. Number of observed patterns with 100 synthetic samples per gene

The number matrices are converted to probability matrices and then transmitted to a

data analysis module. These empirical data are analyzed and their results are put into

Excel to produce necessary charts.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

**000000 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0

**000001 65 115 116 131 135 147 150 149 158 150 149 144 137 130 118 118 119 112 110 113 107 106 105 98 91 87 91 90 89 89

**000002 0 13 28 44 58 67 90 97 122 143 149 169 181 196 210 215 228 235 246 246 261 260 262 275 284 298 301 303 305 310

@000011 384 251 234 161 139 111 94 83 56 47 38 23 22 18 16 14 8 8 4 4 2 2 0 1 1 1 1 1 0 0

**000012 73 164 174 222 233 248 244 253 244 240 243 244 238 233 231 226 218 220 213 208 202 203 205 196 195 184 174 173 170 170

**000022 0 0 0 2 4 5 4 8 10 14 16 15 17 22 24 25 26 24 26 28 27 29 28 29 28 30 33 33 36 31

**000111 25 13 13 8 6 4 4 2 0 1 0

@000112 3 3 7 4 3 4 2 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**000122 0 0 1 0

@001011 3 0 1 0

@001012 2 4 2 4 6 0 0 0 2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**001022 0 0 0 0 0 2 1 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@001112 1 1 0

**001122 0 0 0 0 1 0

**100001 6 6 5 8 7 4 5 1 1 1 0

**100002 0 1 1 1 3 2 2 2 4 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

@100011 12 14 6 6 1 0

@100012 10 7 6 5 1 3 3 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

@101001 3 1 0 1 0

@101011 5 1 2 1 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**101012 5 6 3 0 0 1 1 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@101022 0 0 0 1 1 0

@101111 2 0 0 1 0

@101112 1 0

@111111 0 0 1 0

35

Appendix B. More about hierarchical clustering

We implemented hierarchical clustering in Python with several metrics and linkage

criteria. We also use Python packages numpy
8
 and PIL/matplotlib

9
.

* Metrics:

- Euclidean distance:

L2Dist = sqrt(sum(({v1}-{v2})**2)) # numpy-based style formula

- Pearson correlation coefficient:

Pcc = sum([({v1}-x1)/s1]*[({v2}-x2))/s2])/(n-1)) # numpy-based style formula

* Linkage criteria:

- Single-linkage and Complete linkage

d(Ck,Cl)) = min[d(Ci,Cl), d(Cj,Cl)]

d(Ck,Cl)) = max[d(Ci,Cl), d(Cj,Cl)]

- Average linkage:

d(Ck,Cl) = [d(Ci,Cl)*|Ci| +d(Cj,Cl)*|Cj|] / (|Ci|+|Cj|) (|Ck|=|Ci|+|Cj|).

These formulas allows computes distance update step in running time O (1) (Gronau

and Moran, 2006).

* Data structure:

- We store each node as a Vector and maintain count field in each tree node, which

equals the number of leaf nodes belong to it.

- We store only lower triangular part of distance matrix.

8
 http://numpy.scipy.org/ - last visited 07/2011

9
 http://matplotlib.sourceforge.net/index.html - last visited 07/2011

http://numpy.scipy.org/
http://matplotlib.sourceforge.net/index.html

36

* Complexity of algorithms:

- Update distance: O (1)

- Find closet element pair: O (n^2).

* Functions for manipulating on cluster results:

- Codes for drawing tree view, labeling inner nodes, extracting clusters and printing

clusters in the form of text-tree are based on work by Jan Erik Solem.
10

10

 http://www.janeriksolem.net/2009/04/hierarchical-clustering-in-python.html - last visited

07/2011

http://www.janeriksolem.net/2009/04/hierarchical-clustering-in-python.html

37

Appendix C. More about mDAG

Dataset format

General information:

 Data must be stored in a text file.

 Columns are separated by tabs. The best way to do this is select appropriate columns

in your Excel files and save them as text.

 The first row is the header that describes each column.

 Each row, starting from the second, corresponds to each gene/probe.

Columns:

 First column: Probe Set Id

 Second column: Gene Symbol

 Third column: UniGene Id

 Fourth column: Rep. Pub. Id

 Fifth column: Gene Title and other information (E.g., Chromosomal Location)

Note:

The first five columns may have missing values. Missing or even inaccurate values on

the first six columns do not affect our analysis. Note, however, that missing or inaccurate

values may cause inaccurate analyses by external resources such as NCBI, GeneMANIA,

DAVID, and GCAT…

 Sixth column (and the rest) specifies the expression value of each replicate for a

treatment.

 Replicates for each treatment group must be consecutive.

 Expression values must be non-log values.

38

Figure 1C shows a snapshot of a sample dataset (shown in Excel, but you must convert to

text format before uploading).

Figure 1C. A snapshot of a dataset in Excel format

Requests

a. Choose a dataset file for uploading (with the format as above)

b. Choose significance level p-value for the analysis (default value is 0.05).

c. Choose number of replicates for all treatments of the dataset, values are distinguished

by a gap (for example: 5 5 5 5).

d. Enter description of the request if needed (more about dataset, parameters or others)

and submit the request.

See Figure 2C and 3C for more details.

39

Figure 2C: Interface for uploading dataset of mDAG

Figure 3C: Interface for uploading dataset of mDAG

40

Results

a. User can check information about requests and results, including request description,

status of the request and request timing.

i. Request description includes all information about datasets and their parameters.

User can download the dataset files.

ii. Status of the request includes: Waiting, Running, Completed, and Error. If status

is “Completed”, user can see the analyzing result.

iii. Result timing includes: request upload time, analyzing start time and finish time.

b. Use can rerun the dataset (for both completed and error status).

c. User can remove the request:

i. With "Waiting" or "Error" status, the system removes the corresponding dataset.

ii. With "Running" status, the system removes the corresponding dataset and stops

the corresponding analysis process.

iii. With "Completed" status, the system removes both the corresponding dataset and

analysis results.

See Figure 4C for more details.

41

Figure 4C: Interface for checking results of mDAG

Other functions

a. Manage Database (only admins):

i. Manage users (add, remove, modify...).

ii. Manipulate on databases (upload/download/select/insert/delete...).

b. Manage profile:

i. User can change their profile, password and related information.

ii. There are two kinds of user: admin and registered user. Admins can use all

functions of the website. Registered user can use all functions except

administration menu.

iii. Data belongs to each user and only this user can see or manipulate on their data.

42

Appendix D. Main algorithms of mDAG

Algorithm 1: Scheduler

Input:

dataset_list: list of datasets with related status. Read from Datasets table.

max_process: max number of processes that can be run. Read from Systems table.

Ouput:

result_set: set of results

Begin

LOCK #Set lock flag

#Count the number of running and waiting processes

running_process=0, waiting_process=0

read dataset_list:

for all dataset in dataset_list:

 if (dataset.status==Running): running_process++

 elif (dataset.status==Waiting): waiting_process++

#If waiting number = 0 then unlock and halt

if (waiting_process == 0):

 UNLOCK ## Set unlock flag in Systems table

 return 0

#If running number >= allowed number and waiting number > 0 then wait and call

Scheduler again

elif (running_process >= max_process):

 UNLOCK ## Set unlock flag

43

 wait(x minutes)

 Call Scheduler ##call Scheduler again

#If running number < allowed number and waiting number > 0 then perform and halt

else:

 remain_process=0

 for all dataset in dataset_list:

 if (dataset.status==Waiting):

 set dataset.status=Running

 Executer(dataset) <put into background>

 remain_process++

 if (remain_process > max_process - running_process):

 break #break out of for loop

 UNLOCK #Set unlock flag

 return 0

End

Algorithm 2: Executer

Input:

- dataset: input dataset with related status

Ouput:

- result: analyzing result

Begin

Call MPC program #The analyzing program with results are tDAGs.

##If result exist

44

if done:

 set dataset.status=Completed

 return result

##If there is error

elif failed:

 set dataset.status=Error

 return 0

 Call Scheduler ##call Scheduler again

End

