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Chapter 1 

Introduction 

Gene expression analysis with DNA microarrays has become one of the mainstreams 

in the field of molecular biology. In living organisms, gene expression is the process that 

uses information from a gene to synthesize a functional gene product (protein or 

functional RNA). Gene expressions are often measured by DNA microarrays, one of the 

most popular technologies in this research. In a microarray experiment, expression levels 

of thousands of genes are simultaneously measured and the data are used to study the 

effects of drugs or diseases.
1
 

While obtaining gene expressions is no longer a challenge in genomics research, 

analysis and interpretation of microarray data is still a major challenge (Subramanian et 

al., 2005). There are many methods proposed to analyze microarray data. Typically, the 

analysis of microarray data is divided into three steps: (1) selecting significant genes for 

further analyses, (2) analyzing these genes with clustering or classification methods and 

(3) interpreting gene clusters or classes to extract biological meaning from them (Phan et 

al., 2009). Most of current approaches often consider these steps separately and neglect to 

take advantage of results from the other steps. Therefore, comprehensive methods that 

take into account more than one step are expected to help understand more from the data. 

Coping with Multiple Treatment Microarray Data 

In many cases, researchers have to work with gene expression data that involve many 

chemical compounds (or treatments) (Sutter et al., 2002; Sawers, Liu, Anufrikova, 

Hwang, & Brutnell, 2007). Moreover, because of biological variations in cells, people 

often need several sets of measurements of gene expressions (Yang, Yang, McIndoe, & 
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She, 2003). Each set of measurement is called a replicate. Microarray data with multiple 

treatments and multiple replicates are often stored in several formats such as GCT, RES 

or PCL.
2
 Figure 1 shows a gene expression dataset with 2 treatments and 4 replicates per 

treatment in GCT format. 

  
 (Treatment group 1) (Treatment group 2) 

 Probe Set Gene information CON1 CON2 CON3 CON4 TREAT1 TREAT2 TREAT3 TREAT4 

 1369943_at Rn.10 2177.696 1045.617 1941.677 1235.957 1691.027 1032.806 1688.829 1049.005 

 1367657_at Rn.1000 8434.484 9746.999 7945.054 9150.292 11070.688 7135.596 11664.801 7243.845 

 1368270_at Rn.10002 19.792 19.511 19.761 14.282 14.486 18.669 20.033 14.832 

 1372094_at Rn.100021 996.149 867.428 1035.417 849.577 1071.943 1095.091 985.208 866.036 

 1399029_at Rn.100022 102.423 118.124 77.588 107.665 103.208 130.816 87.883 103.508 

 1376849_at Rn.100022 217.969 168.746 149.847 170.000 241.984 148.219 145.839 182.011 

 1397005_at Rn.100042 6.006 6.366 6.387 6.543 6.351 7.211 6.320 7.459 

  

Figure 1. A gene expression dataset with 1 control group and 1 treatment group. 

 

In general, it requires further efforts to analyze and interpret gene expressions with 

multiple treatment microarray data (tens or even hundreds of chemical compounds). If 

there will not be enough replicates, it would be difficult to draw statistically reliable 

conclusion from the data (Pan & Le, 2002). That lack of replicates may lead to 

misleading/uncertain results. 

Analysis of microarray data with transitive directed acyclic graphs 

Phan et al. (2009) proposed a method for clustering multiple treatments gene 

expression data with transitive directed acyclic graph (tDAG). tDAGs are graphical 

representations of patterns of outcomes of statistical comparisons of gene expression 

profiles. Concretely, given a gene expression profile, perform all possible pairwise 

comparisons based on two-sided hypotheses we obtain a set of possible outcomes. These 

outcomes can be represented as a tDAG. Although based entirely on a statistical 
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construction, these outcomes reveal meaningful biological information about the tDAG 

that the genes fall into. It was shown that this method deals with multiple treatment 

microarray data better than other popular clustering methods such as hierarchical 

clustering or k-mean. This method has been applied and found useful in identifying and 

differentiating genes sharing similar functional pathways (Tran et al., 2009). 

In this work, graphical patterns are determined using Wilcoxon rank-sum test to do 

pairwise comparisons for treatments, where: 

 Vertices consist of the treatments T1, T2, …, Tn 

 Edges represent the outcomes of Wilcoxon rank-sum tests: 

 “T1 → T2” stands for the outcome T1 > T2 which means that gene is expressed 

significantly more under T1 than under T2. 

 “No edge between T1 and T2” stands for the outcome T1 ~ T2 which means that 

there is no statistical difference of expression of the gene under T1 and T2. 

Each set of outcomes corresponds to an acyclic transitive closure with n vertices, that 

is, these patterns are transitive directed acyclic graphs. In additional, these graphs can be 

contractible or non-contractible. We say that a graph is contractible if (1) it is a complete 

graph or (2) it can be contracted to a complete graph that preserves all vertex-edge 

relationships in the original one. Phan, George, Tran, & Sutter (2008) showed that there 

is a relationship of the sample size problem with a property of directed graphs known as 

contractibility. 

Figure 2 shows two graphical representations of gene response to 4 treatments (CON, 

TREAT1, TREAT2, and TREAT3) with a non-contractible graph (A) and a contractible 

graph (B). In particular, graph (A) shows a pattern with 1 control and 3 treatments where 
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gene is expressed significantly more under TREAT2 than under TREAT1, more under 

TREAT1 (TREAT2, TREAT3) than under CON and there is no statistical difference of 

expression of the gene under TREAT1 (TREAT2) and TREAT3. In graph (B), there is 

another edge from TREAT3 to TREAT1, which means gene is expressed significantly 

more under TREAT3 than under TREAT1. The left graph can be contracted to the right 

graph by grouping 2 equivalent vertices TREAT2 and TREAT3. 

 

Figure 2. A non-contractible graph (A) and a contractible graph (B). 

With such graphical presentation of gene responses, the analysis of microarray data is 

done through three steps: (1) selecting significant genes using Kruskal-Wallis with false 

discovery rate controlled; (2) determining the pattern of response of each gene using 

Wilcoxon rank sum tests to detect how the gene responds to all pairs of treatments; and 

(3) grouping genes with similar patterns into the same cluster. In addition, similar 

patterns are further placed into "meta" clusters. For future reference of this method, we 

call this method MPC (multiple pairwise comparisons). In the rest of this thesis, we 

extend this method to analyze further patterns as well genes in such patterns to extract 

meaningful information and make more reliable predictions. 
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Content of Thesis 

The first problem studied is the contractibility of patterns when the number of 

replicates increases. The gene expression patterns obtained with more replicates might 

differ from each other considerably. Our objective is making predictions about probable 

patterns by simulating gene expressions based on real data with few replicates. We show 

that solving these problems leads us to meaningful results. It helps us predict whether 

potential pattern of genes are certain when there are more replicates. From this, we can 

quantify the relationship between the contractible patterns and sample size (i.e., number 

of replicates). It allows people predict how many samples needed for a non-contractible 

graph to become contractible, which help determine the necessary number of microarrays 

needed to get reliable results. 

In the second problem, we consider the magnitude of gene expression data, which is 

ignored in the first problem. Although genes in patterns share common characteristics 

that reflect their responses with treatments, they are might different each other on their 

expression levels. Incorporating magnitude of expression data into the MPC method 

might provide us meaningful results. In the second problem, we use hierarchical 

clustering to analyze genes in patterns further using fold information between expression 

profiles of treatments. We also create a tree view of clusters to help people analyze 

further results. 

The last problem in this thesis is building a software package for analyzing 

microarray data. This software is called mDAG. This web-based application allows users 

upload gene expression datasets. Analysis is done through steps in MPC method. User’s 

requests are scheduled to run in such a way that it does not overload the server. The 
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pattern of response of any gene is represented visually. mDAG is implemented using 

Python, MySQL and web2py – a free open source framework for development of web-

based applications.
3
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Chapter 2 

Problem Definition 

First, we present a formulation for the problem of predicting potential patterns from 

gene expression data using simulation. Second, we describe a method for clustering gene 

patterns based on fold information. Finally, we consider requirements of a tool for 

analyzing microarray data that implement the MPC method. We also consider some 

related problems for further discussions about this field of interest. 

Predicting Potential Patterns from Gene Expression Data 

Phan et al. (2008) showed that, with large numbers of replicates, more contractible 

patterns will be observed hence we can get reliable conclusions. However, researchers 

often deal very few numbers of replicates (due to cost). In this situation, researchers 

might get uncertain results due to insufficient information. For example, Figure 3 (a) 

shows a non-contractible observed pattern when the number of replicates is insufficient. 

If we have a sufficient number of replicates, (a) might become either pattern (b), (c) or 

(d), which are contractible. 

 
 

Figure 3. A non-contractible pattern (a) and its possible derived patterns (b, c, d). 
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The question is, which contractible patterns can a non-contractible pattern become to 

when more replicates are added? Formally, given a non-contractible pattern G, let SG be 

the set of all contractible patterns from which G can become. We want to calculate the 

probability pi that G will become Gi ∈  SG when replicates are sufficiently large. 

Determining exactly and efficiently SG or |SG| might be a hard problem because the 

numbers of ways to add more edges are exponential. However, solving this may help 

scientists to determine whether certain response patterns are reliable even when sample 

size is not sufficient. 

One of the feasible ways to predict these is using synthetic data to produce more 

replicates and observe the results. By simulating synthetic gene expressions based on real 

samples (with few replicates), we can make predictions about patterns that might have 

been generated for genes with non-contractible patterns. We will have various models of 

simulation of gene expression with various assumptions including normal distribution of 

gene expressions as well as non-parametric methods; for example using methods similar 

to (Albers, Jansen, Kok, Kuipers, & Hijum, 2006). 

In this thesis, the synthetic gene expression data has a Gaussian distribution. We 

calculate mean and standard deviation for this distribution from sample means and 

sample standard deviations of the real data. After that, we perform experiments on the 

data and make predictions based on the results. 

Clustering further genes in patterns based on their magnitudes 

As previously mentioned, one of remaining problems of the MPC method is the 

differences in magnitude of gene expressions. For example, consider two genes in Figure 

4, although they belong to the same pattern with CON > TREAT1 > TREAT2, the 



9 

 

magnitude of CON is 10-fold the one of TREAT1 in gene A but only 2-fold the one of 

TREAT2 in gene B. This maybe leads to different properties between genes. 

       
Figure 4. An illustration of two genes with the same graphical pattern but different in their 

magnitudes. The numbers in brackets represent the magnitudes of treatments. 

 

The problem is how to incorporate fold information between gene expressions of 

treatments into MPC method. This leads to another approach where we consider patterns 

as weighted graphs instead of non-weighted graphs. In this model, each edge has a weight 

which is the fold-value between gene expression profiles of treatments. One of 

advantages of this approach that is we can classify further genes with the same patterns 

into subclasses, which might bring us another useful layer of information. 

We implemented an algorithm based on hierarchical clustering with several metrics 

(Baxevanis & Ouellette, 2006; Deonier, Tavare, & Waterman, 2005; Gopal, Haake, 

Jones, & Tymann, 2006). We created a tree view of clusters to allow users visualize 

clustering results. 

Constructing a tool for analyzing microarray data using directed graphs 

As a web-based application, mDAG needs to take as input microarray data from users 

over the web. After that, it selects significant genes, performs statistical analysis, and 
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places them in appropriate patterns. Analysis is done in three steps: (1) significant genes 

are selected using Kruskal-Wallis with false discovery rate controlled; (2) the pattern of 

response for each gene is determined using Wilcoxon rank sum tests to detect how the 

gene responds to all pairs of treatments and (3) genes with similar patterns are placed into 

the same cluster. Similar patterns are further placed into "meta" clusters. The details of 

this process can be found in Phan et al. (2009). 

To manage requests and results properly, mDAG needs a “Scheduler” program. 

Scheduler uses server resources effectively and schedules users’ requests. Submitted 

requests are scheduled to run in a way that it does not overload the server. The Scheduler 

needs to call an “Executer” program, which is responsible for analyzing datasets. The 

Executer updates status of the requests and performs the MPC method. 

Data sets must be a text file in GCT format 
4
 with two restrictions: (1) missing 

expression value is not allowed for expression data and (2) treatment groups are grouped 

together: the first group is Control group; the second group is the first treatment group; 

the third group is another treatment group; and so on.  The software also needs to 

represent results in such a way that they are convenient for people to analyze further them 

as well as link them to external resources. 
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Chapter 3 

Methods and Experiments 

In this section, we present a method for generating synthetic gene expression based 

on real data and analyzing them with MPC method. We also describe experiments for 

predicting potential patterns from synthetic data. Second, we describe a method for 

calculating distance between genes for hierarchical clustering based on fold information. 

Last, we design a workflow for mDAG that satisfies all requirements in section 2.3. 

Generating synthetic gene expressions for predicting gene response patterns 

As mentioned in previous section, there are various models of simulating gene 

expression with various assumptions including normal distribution of gene expressions as 

well as non-parametric methods. In this study, the assumption is synthetic gene 

expression data has a Gaussian distribution. Means and standard deviations for this 

distribution are calculated from the real data. 

Suppose a gene has n replicates for each treatment.  We used these replicates to 

generate k additional replicates for this treatment group with parameters (μ, σ) that are the 

sample mean and standard deviation of the real replicates. Concretely, assume that we 

have a gene with non-contractible pattern p from a real expression profile with n 

replicates (x1, x2 … xn). The p is obtained using Wilcoxon rank-sum test for all pairwise 

comparison. Do the following steps: 

1. Generating a synthetic expression profile (xn+1, xn+2 … xn+k) for k more replicates. 

Assume that the synthetic data set has normal distribution with parameters (μ, σ) are 

the sample mean and the sample standard deviation of the real data set. 
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2. Using Wilcoxon rank-sum test for the data (x1, x2 … xn, xn+1, xn+2 … xn+k), we obtain a 

pattern p1. 

3. Similarly, for another synthetic expression profile (x’n+1, x’n+2 … x’n+k), we obtain 

another pattern p2, and so on. 

From this result, we can determine a list of observed patterns and their frequencies 

(for every sample) for all synthetic replicates as illustrated in Figure 5. For each gene, 

with M samples, we can obtain the list of patterns p1, p2 … pm for each more synthetic 

replicate. Some patterns among them probably are the same, therefore the number of 

distinct patterns often less than M. Notice that in one experiment, the synthetic samples 

for previous replicates are retained for next samples. These results can be represented as 

matrices. 

 
Figure 5. An illustration of observed patterns and their frequencies. 

Based on this method, we can design an experiment as the followings: 

i. Determining the pattern for each gene with real data. Call them initial patterns for 

each gene. Some of them are contractible, the others are non-contractible. 

N genes 

K (synthetic) replicates 

N genes 

K (synthetic) replicates 
Analyzing 

M samples 
Set of patterns 
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ii. Generating synthetic data with 30 more replicates for all genes with 100 samples for 

each more replicate. In each sample, the synthetic samples for previous replicates are 

retained for next replicates. 

iii. Using Wilcoxon rank-sum test to obtain patterns for each gene for each sample and 

each replicate. 

iv. Collecting all data as frequency matrices for observed patterns. Representing 

patterns in frequency charts to consider their behavior. 

After all, we can perform necessary calculations on this empirical data to produce 

useful predictions. 

Calculating distance between genes for hierarchical clustering 

In this section we describe a method to calculate distance between genes in pattern 

based on fold information of gene expression data. First we need to compute the 

“representative value” of treatments and then we can calculate the fold-value between 

treatments. The distance between 2 genes is calculated based on their fold-values. 

If there are k treatments (including control) with several replicates, then each gene 

can be represented as a vector of k treatments:  Gi = (T1, T2… Tk) where each treatment is 

a vector with n values (for n replicates): Ti = (r1, r2… rn). Then, the “representative 

value” of each treatment is computed as normalized norm L1 (mean) of Ti
5
. From this, we 

can compute the fold-value between treatments as follow: Fi = {f (T1, C), f (T2, C), f (T1, 

T3), f (T2, T3)} where f is fold-function. The fold-value indicate the differentiate genes in 

the same pattern. Here we ignore edges between unrelated vertices. 

Figure 6 illustrates the representative value for expression profiles of treatments and 

fold-value between them for a gene with its pattern. With this distance, we can apply a 
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clustering method to analyze genes in patterns further. We elected to use hierarchical 

clustering with several metrics and linkage criteria. 

 

Figure 6. Representative value for expression profiles of treatments and fold-value between them. 

The numbers in brackets represent the magnitudes of treatments. The numbers in square brackets 

represent the fold-value between treatments. 

 

Designing the software: mDAG 

In this section, we design a Scheduler (Figure 7) that scheduled submitted requests to 

run in such a way that they do not overload the server. There are often many requests at 

the same time and Scheduler need to allow only some processes to run. Numbers of 

processes are determined based on existing resource. In this software, we set a fixed 

number of requests as a threshold and allow more requests if resource still enough. The 

following is the main responsibilities of the Scheduler: 

i. When a request is sent to server, the Scheduler check the running requests and 

determine whether allowing more requests to run. Requests are analyzed 

respectively in incoming-time order. 

ii. Status of requests includes "Waiting" (uploaded, not analyze yet), "Running" (is 

being analyzed), "Completed" (analyzed, there is result) or "Error" (there are errors 

[1.4283] 

[1.4657] [1.2610] 

[1.2940] 

(840.2705)     (1087.3076) 

(862.2923) (1231.5901) 

CON TREAT1 

TREAT2 TREAT3 
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when analyzing the data, for example, no gene is significantly differentially 

expressed or the data format is not conformable with the program). 

iii. Call Executer program to analyze the dataset. Executer update status of the request 

to Running, Completed or Error, perform MPC method to produce results. The 

Executer need to call Scheduler after finish a request. 

 
 

Figure 7. Sequence diagram of the Scheduler program in mDAG 

The MPC clustering methods had been implemented in Phan et al. (2009). With some 

modifications, it is incorporated into mDAG as a part of Executer. More detail about 

MPC method can be found in Phan et al. (2009). Some codes (in Python) for this method 

can be found at http://binf2.memphis.edu/ashutosh/pythoncodes.html - last visited 

07/2011. 

 

http://binf2.memphis.edu/ashutosh/pythoncodes.html
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Chapter 4 

Results 

Predictions about Potential Patterns 

We implement a program in Python for obtaining the list of observed patterns (with 

synthetic data) and their frequencies for all replicates and samples. Another module is 

used to analyze them for obtaining necessary results. We use a dataset from Phan et al. 

(2009), which has 12906 genes, 4 treatments (include control) with 5 real replicates per 

treatment. After generating synthetic data with 30 more replicates for all genes with 100 

samples for each more replicate, the genes in such patterns are analyzed to determine the 

pattern for each sample and each replicate. Finally, we collect all data as frequency 

matrices for observed patterns and analyze them for further studying. 

Figure 8 shows an analysis on a gene with initial non-contractible pattern from which 

several contractible patterns are predicted. The total of probability of all patterns (shown 

in different colors) per replicate is 1. Larger portions mean those patterns are more likely 

observed from the non-contractible pattern. After using about 20 synthetic replicates, 3 

contractible patterns emerge as most likely from a non-contractible pattern. 

Figure 9 shows average entropy of genes. The entropy for each replicate was 

calculated from the frequencies of observed patterns. Entropy decreases when we have 

more replicates show that divergence of patterns decreases. 

From Figure 8 and Figure 9 we can observe the trend of changes of response of a 

gene in a non-contractible pattern when the sample size increases. 

Last, Figure 10 shows the entropy boxplot for each more replicate of this gene. 
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Figure 8. An analysis on a gene with non-contractible pattern. 

 

Figure 9. Entropy plot (on average) for the analysis in Figure 8. 

 

Figure 10. Entropy boxplot for the analysis in Figure 8. 
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In the rest of section, we present predictions about the patterns. These predictions 

based on calculating entropy and/or probability of potential patterns. 

Synthetic replicates help predict potential patterns of a gene. For genes in both 

contractible and non-contractible patterns, several patterns are most likely to be observed. 

Entropies are reduced when more replicates are added (Figure 11). 

 

Figure 11. Average entropies of patterns of all genes for 30 more replicate. 

Predicted patterns are likely contractible. Most of potential patterns are 

contractible patterns: probabilities of contractible patterns increase to 1 (Figure 12). 

Because of the result from section 4.1.1, potential patterns converge to several ones, so 

when we have more replicate genes are distributed into several contractible patterns. 
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Figure 12. Average probabilities of contractible patterns for 30 more replicate. 

Predicted patterns are likely to be extensions of initial patterns. Most of potential 

patterns are supper patterns of the initial patterns (with 5 real replicates): probabilities of 

contractible patterns increase to 1 (Figure 13). Again, because of the result from section 

4.1.1, potential patterns converge to several ones, so when we have more replicates genes 

were distributed into several supper patterns (patterns that are extensions of initial 

pattern). 

Moreover, because of the result from sections 4.1.2 and 4.1.3, predicted patterns are 

likely to be contractible extensions of initial patterns, so when we have more replicates 

genes were distributed into several contractible supper patterns. 
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Figure 15. Average probabilities of patterns from genes with initial non-contractible patterns for 

30 more replicate 

Potential patterns are the same with initial patterns in contractible genes than 

non-contractible genes (Figure 16). 

 

 

Figure 16. Average probabilities of patterns which is the same with initial patterns for 30 more 

replicate 
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In particular, most potential patterns of genes with complete patterns are the same 

with initial patterns, their probabilities very close to 1 (Figure 17). 

 
 

Figure 17. Average probabilities of patterns which is the same with initial complete patterns for 

30 more replicate 

 

Clustering Results for Genes in Patterns 

To cluster genes in patterns, we implement hierarchical clustering in Python with 

several metrics and linkage criteria. About metrics, we use the Euclidean distance and 

Pearson correlation coefficient. We implement single-linkage/complete linkage and 

average linkage. All criteria are implemented in such a way that they compute distance 

update step in running-time O(1). The distance formula for this algorithm is described in 

section 3.2. 

About data structure, we store each node as a Vector and maintain a “count” field in 

each tree node, which holds the number of leaf nodes which belongs to it in hierarchical 

tree. To improve running-time, we store only lower triangular part of distance matrix. 
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The result of clustering is visualized as a tree with labels to convenient for analyzing 

them further. The labels include ID of derived clusters and number of genes in them, 

name and ID of genes in input data. 

To convenient for manipulating on clusters, we implement functions that allow user: 

- Draw tree view into an image file. 

- Label nodes with necessary information. 

- Extract a set of clusters with distance less than a given value. 

- Extract a given number of clusters. 

- Return all elements of a cluster 

Figure 18 represents a result of clustering of 10 genes in pattern 222221 with 4 

treatments and 5 replicates per treatment, using Euclidean distance with average linkage. 

 

 
 
Figure 18. A result for clustering 10 genes in the same pattern 

Inner nodes: the upper number is cluster’s id and the lower number (in brackets) is total number 

of genes in the cluster. Leaf nodes: gene’s name and gene’s id (in brackets) in the input dataset. 

Figure 19 represents result of clustering 168 genes in pattern 122221 with 4 

treatments and 5 replicates per treatment, using Euclidean distance and average linkage. 

We can see some groups of genes are relatively separate. From this, there are some 

remarkable observations: 
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i. Effect of number of replicates: clustering vary through number of replicates (from 

non-contractible pattern to contractible pattern). 

ii. Effect of metrics: results with Euclidean distance differ much from Person 

correlation coefficient. 

iii. Effect of linkage criteria: results with average linkage (and complete linkage) differ 

much from single-linkage. 

 From the clustering result, we can extract groups for analyze further. 

 
Figure 19. A result of clustering of genes in a pattern with separated groups of genes. 

 

Features of mDAG 

The application is implemented using Python, MySQL and web2py. User can use one 

of the sample data sets that are provided with the application to submit a request for 

analysis or use their own properly-formatted dataset. 
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Users can choose significance level p-value for the analysis (default value is 0.05). 

They can choose number of replicates for all treatments of the dataset. Finally, user can 

enter description of the request if needed (more about dataset, parameters or others). 

After a request is finished, the user can check information about the requests and 

results, including dataset file and request description, status of the request, request upload 

time, analyzing start time, and finish time. 

A request description includes all user information uploaded: number of probe sets, 

number and name of treatments with replications, significant level, replication number 

for each treatment and request description (if it exists). Users can download datasets. 

Status of the request is one of the following: Waiting, Running, Completed, and 

Error. If status is “Completed”, users can check the analyzing result. If status is “Error”, 

users can re-run the corresponding dataset. Users also can re-run the dataset for dataset 

with “Completed” status. 

Finally, users can remove the request. With "Waiting" or "Error" status, the system 

removes the corresponding dataset. With "Running" status, the system removes the 

corresponding dataset and stops the analyzing process. With "Completed" status, the 

system removes both the corresponding dataset and analyzing result. 
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Chapter 5 

Discussion 

Simulation Method for Predicting Potential Patterns 

Simulated data helps us to find out useful results that are conformable with theoretical 

predictions. However, there are two problems we currently face with this approach. 

First, the simulation method takes much time to run. In many cases, there are a large 

number of samples as well as replicates need to test, hence the complexity of algorithms 

is very important. We exploited some techniques to improve its performance. For 

example, we use dynamic programming for computing exact p-values of Wilcoxon rank-

sum test based on (Ross, 2002) (during the process of determining graphical patterns) and 

show that it is effective. Nevertheless, simulating synthetic expressions of several 

thousand genes can take up much time on regular desktops. For example, it takes two 

more than a week of computing to perform even with only 100 samples and 30 replicates. 

We exploited high performance cluster to improve the runtime but it still need to improve 

more, such as using parallel program. 

Second, determining appropriate amount of synthetic replicates to generate for each 

gene is quite difficult. Generating too many synthetic replicates can be both 

computationally expensive and causing over-fitting results. This leads us to another 

problem: design computational efficient methods for selecting the right amount of 

synthetic replicates to predict probable contractible patterns from non-contractible 

patterns. However, this arises some computational questions that are non-trivial. 

There are some interesting theory questions in this problem. First, can we predict 

observable patterns (or the probabilities of them) for more replicates without synthetic 
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data? For example, can we construct a mathematical formula to determine SG or |SG| for a 

given graph G efficiently? Although this question possible efficiently determined, the 

similar questions comparing G and another pattern G’ can be computationally hard 

(Phan, 2010). For example, given a non-contractible pattern G and another pattern G’, it 

is NP-hard to compute the minimum distance between a member of SG and a member of 

SG’ (Blin et al., 2007; Fu & Jiang, 2007). What this implies is that given two observed 

patterns, which happen to be non-contractible, it is computationally hard to find out their 

closest distance if we were to have sufficient replicates. 

Incorporating Traditional Clustering into Current Method 

Besides the hierarchical clustering in this thesis, we developed a program to 

implement k-mean method for clustering genes in patterns. These methods were 

implemented with several distance measures and linkage criteria. One of the next works 

is incorporating this method into MPC method. We hope that it can bring us a 

considerable improving for the results from MPC method. 

Develop the Next Version of mDAG 

In the future we plan to integrate the results from the simulation method as well as 

some other software into mDAG. From this, users can make predictions with their 

datasets that have few replicates. The results will be presented on a web-based interface 

so that people can study them further. 
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Chapter 6 

Conclusion 

We showed that the simulation is useful to quantify the relationship between the 

contractible patterns and sample size (i.e., number of replicates or number of microarrays 

needed to get reliable results). By simulating synthetic gene expressions based on real 

data with few replicates, we can predict the potential patterns of a given gene with limited 

number of replicates. This may help scientists to determine whether certain response 

patterns are reliable even when sample size is not sufficient. Moreover, by analyzing the 

empirical datasets from synthetic data, we can predict how much more samples needed 

for non-contractible graphs to become contractible. From this point, we showed that there 

is a relationship between “contractible” patterns and the necessary number of replicates 

needed to get reliable results. This may help using a necessary number of microarrays. 

Besides the variance of response that is exploited in the MPC method, we also 

consider the magnitude of gene expression. We use hierarchical clustering to cluster 

further genes in patterns where the distance is the fold information between expression 

profiles of treatments. The result from this method can be used to study further genes in 

patterns as well as improve the MPC method. We showed that this might produce another 

meaningful layer of information. We also create a tree view of clusters with support 

methods to convenient for analyzing further results. 

As an application of the method, the mDAG software was constructed to provide a 

tool for user analyze microarray data with multiple treatments. It implements the MPC 

method that analyzes microarray data with multiple treatments and multiple replicates, 

using directed graphs. As a web-based application, mDAG allows users to upload 
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microarray data in GCT format through a web interface. From this data, the application 

performs calculations to assign graphical patterns to genes and outputs images and textual 

data for further analyses. mDAG is implemented using Python, MySQL and web2py. 

In the future, we plan to analyze further properties of observed patterns from 

synthetic data as well as perform analysis with datasets which have more treatments. 

(Baldi, & Brunak, 2005; Gopal et al., 2006) provided some useful methods. Some other 

sources, such as GO 
6
 or GeneMania 

7
 can be the useful information sources. We also 

plan to study theoretical aspects of the problem, including the predictions of potential 

patterns. 

                                                 
6
 The Gene Ontology project: http://www.geneontology.org/  - last visited 07/2011 

7
 The GeneMANIA project: http://genemania.org/  - last visited 07/2011 

http://www.geneontology.org/
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Appendix A. More about simulated data 

Figure 1A shows a number matrix for observed patterns for through replicates of one 

non-contractible pattern (000011) with synthetic data. This pattern has 6 genes. There are 

30 more synthetic replicates (the columns) and 25 observed patterns (the rows) for all 

replicates. Many of them “disappear” when the number of replicates is enough large. 

When the numbers of replicates come up to about 20, four of them, that all are 

contractible patterns, dominate the others. In the figure, the patterns with ** mark are 

contractible while the ones with @ mark are non-contractible. 

 

Figure 1A. Number of observed patterns with 100 synthetic samples per gene 

The number matrices are converted to probability matrices and then transmitted to a 

data analysis module. These empirical data are analyzed and their results are put into 

Excel to produce necessary charts.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

**000000 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0

**000001 65 115 116 131 135 147 150 149 158 150 149 144 137 130 118 118 119 112 110 113 107 106 105 98 91 87 91 90 89 89

**000002 0 13 28 44 58 67 90 97 122 143 149 169 181 196 210 215 228 235 246 246 261 260 262 275 284 298 301 303 305 310

@000011 384 251 234 161 139 111 94 83 56 47 38 23 22 18 16 14 8 8 4 4 2 2 0 1 1 1 1 1 0 0

**000012 73 164 174 222 233 248 244 253 244 240 243 244 238 233 231 226 218 220 213 208 202 203 205 196 195 184 174 173 170 170

**000022 0 0 0 2 4 5 4 8 10 14 16 15 17 22 24 25 26 24 26 28 27 29 28 29 28 30 33 33 36 31

**000111 25 13 13 8 6 4 4 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@000112 3 3 7 4 3 4 2 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**000122 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@001011 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@001012 2 4 2 4 6 0 0 0 2 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**001022 0 0 0 0 0 2 1 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@001112 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**001122 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**100001 6 6 5 8 7 4 5 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**100002 0 1 1 1 3 2 2 2 4 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

@100011 12 14 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@100012 10 7 6 5 1 3 3 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

@101001 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@101011 5 1 2 1 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

**101012 5 6 3 0 0 1 1 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@101022 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@101111 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@101112 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@111111 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix B. More about hierarchical clustering 

We implemented hierarchical clustering in Python with several metrics and linkage 

criteria. We also use Python packages numpy 
8
 and PIL/matplotlib 

9
. 

* Metrics: 

- Euclidean distance: 

L2Dist = sqrt(sum(({v1}-{v2})**2)) # numpy-based style formula 

- Pearson correlation coefficient: 

Pcc = sum([({v1}-x1)/s1]*[({v2}-x2))/s2])/(n-1)) # numpy-based style formula 

* Linkage criteria: 

- Single-linkage and Complete linkage 

d(Ck,Cl)) = min[d(Ci,Cl), d(Cj,Cl)] 

d(Ck,Cl)) = max[d(Ci,Cl), d(Cj,Cl)] 

- Average linkage: 

d(Ck,Cl) = [d(Ci,Cl)*|Ci| +d(Cj,Cl)*|Cj|] / (|Ci|+|Cj|)  (|Ck|=|Ci|+|Cj|). 

These formulas allows computes distance update step in running time O (1) (Gronau 

and Moran, 2006). 

* Data structure: 

- We store each node as a Vector and maintain count field in each tree node, which 

equals the number of leaf nodes belong to it. 

- We store only lower triangular part of distance matrix. 

                                                 
8
 http://numpy.scipy.org/   - last visited 07/2011 

9
 http://matplotlib.sourceforge.net/index.html   - last visited 07/2011 

http://numpy.scipy.org/
http://matplotlib.sourceforge.net/index.html
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* Complexity of algorithms: 

- Update distance: O (1) 

- Find closet element pair: O (n^2). 

* Functions for manipulating on cluster results: 

- Codes for drawing tree view, labeling inner nodes, extracting clusters and printing 

clusters in the form of text-tree are based on work by Jan Erik Solem.
10

 

  

                                                 
10

 http://www.janeriksolem.net/2009/04/hierarchical-clustering-in-python.html   - last visited 

07/2011 

http://www.janeriksolem.net/2009/04/hierarchical-clustering-in-python.html
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Appendix C. More about mDAG 

Dataset format 

General information: 

 Data must be stored in a text file. 

 Columns are separated by tabs. The best way to do this is select appropriate columns 

in your Excel files and save them as text. 

 The first row is the header that describes each column.  

 Each row, starting from the second, corresponds to each gene/probe. 

Columns: 

 First column: Probe Set Id 

 Second column: Gene Symbol 

 Third column: UniGene Id 

 Fourth column: Rep. Pub. Id 

 Fifth column: Gene Title and other information (E.g., Chromosomal Location) 

Note: 

The first five columns may have missing values. Missing or even inaccurate values on 

the first six columns do not affect our analysis. Note, however, that missing or inaccurate 

values may cause inaccurate analyses by external resources such as NCBI, GeneMANIA, 

DAVID, and GCAT… 

 Sixth column (and the rest) specifies the expression value of each replicate for a 

treatment. 

 Replicates for each treatment group must be consecutive. 

 Expression values must be non-log values. 



38 

 

Figure 1C shows a snapshot of a sample dataset (shown in Excel, but you must convert to 

text format before uploading).  

 

Figure 1C. A snapshot of a dataset in Excel format 

Requests 

a. Choose a dataset file for uploading (with the format as above) 

b. Choose significance level p-value for the analysis (default value is 0.05). 

c. Choose number of replicates for all treatments of the dataset, values are distinguished 

by a gap (for example: 5 5 5 5). 

d. Enter description of the request if needed (more about dataset, parameters or others) 

and submit the request. 

See Figure 2C and 3C for more details. 
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Figure  2C: Interface for uploading dataset of mDAG 

 

Figure 3C: Interface for uploading dataset of mDAG 
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Results 

a. User can check information about requests and results, including request description, 

status of the request and request timing. 

i. Request description includes all information about datasets and their parameters. 

User can download the dataset files. 

ii. Status of the request includes: Waiting, Running, Completed, and Error. If status 

is “Completed”, user can see the analyzing result. 

iii. Result timing includes: request upload time, analyzing start time and finish time. 

b. Use can rerun the dataset (for both completed and error status). 

c. User can remove the request: 

i. With "Waiting" or "Error" status, the system removes the corresponding dataset. 

ii. With "Running" status, the system removes the corresponding dataset and stops 

the corresponding analysis process. 

iii. With "Completed" status, the system removes both the corresponding dataset and 

analysis results. 

See Figure 4C for more details. 
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Figure 4C: Interface for checking results of mDAG 

Other functions 

a. Manage Database (only admins): 

i. Manage users (add, remove, modify...). 

ii. Manipulate on databases (upload/download/select/insert/delete...). 

b. Manage profile: 

i. User can change their profile, password and related information. 

ii. There are two kinds of user: admin and registered user. Admins can use all 

functions of the website. Registered user can use all functions except 

administration menu. 

iii. Data belongs to each user and only this user can see or manipulate on their data. 
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Appendix D. Main algorithms of mDAG 

Algorithm 1:   Scheduler 

Input: 

dataset_list: list of datasets with related status. Read from Datasets table. 

max_process: max number of processes that can be run. Read from Systems table. 

Ouput: 

result_set: set of results 

Begin 

LOCK  #Set lock flag 

#Count the number of running and waiting processes 

running_process=0, waiting_process=0 

read dataset_list: 

for all dataset in dataset_list: 

       if  (dataset.status==Running): running_process++ 

      elif (dataset.status==Waiting): waiting_process++ 

#If waiting number = 0 then unlock and halt 

if (waiting_process == 0): 

       UNLOCK   ## Set unlock flag in Systems table 

       return 0 

#If running number >= allowed number and waiting number > 0 then wait and call 

Scheduler again 

elif (running_process >= max_process): 

       UNLOCK    ## Set unlock flag 
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       wait(x minutes) 

       Call Scheduler  ##call Scheduler again 

#If running number < allowed number and waiting number > 0 then perform and halt 

else: 

       remain_process=0 

       for all dataset in dataset_list: 

        if (dataset.status==Waiting): 

         set dataset.status=Running 

         Executer(dataset) <put into background> 

         remain_process++ 

         if (remain_process > max_process - running_process): 

          break  #break out of for loop 

      UNLOCK    #Set unlock flag 

      return 0 

End 

Algorithm 2:   Executer 

Input: 

- dataset: input dataset with related status 

Ouput: 

- result: analyzing result 

Begin 

Call MPC program #The analyzing program with results are tDAGs. 

##If result exist 
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if done: 

    set dataset.status=Completed 

    return result 

##If there is error 

elif failed: 

    set dataset.status=Error 

    return 0 

    Call Scheduler    ##call Scheduler again 

End 


