
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

11-26-2011

Advance Bandwidth Scheduling in High-speed Dedicated Advance Bandwidth Scheduling in High-speed Dedicated

Networks Networks

Yunyue Lin

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Lin, Yunyue, "Advance Bandwidth Scheduling in High-speed Dedicated Networks" (2011). Electronic
Theses and Dissertations. 342.
https://digitalcommons.memphis.edu/etd/342

This Dissertation is brought to you for free and open access by University of Memphis Digital Commons. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

https://digitalcommons.memphis.edu/
https://digitalcommons.memphis.edu/etd
https://digitalcommons.memphis.edu/etd?utm_source=digitalcommons.memphis.edu%2Fetd%2F342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.memphis.edu/etd/342?utm_source=digitalcommons.memphis.edu%2Fetd%2F342&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:khggerty@memphis.edu

ADVANCE BANDWIDTH SCHEDULING

IN HIGH-SPEED DEDICATED NETWORKS

by

Yunyue Lin

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

December, 2011

To My Beloved Parents.

ii

Abstract

Lin, Yunyue. Ph.D. The University of Memphis. December 2011. Advance Bandwidth

Scheduling in High-speed Dedicated Networks. Major Professor: Dr. Qishi Wu.

An increasing number of high-performance networks provision dedicated connections

through circuit switching or MPLS/GMPLS techniques to support large data transfer. The

link bandwidths in such networks are typically shared by multiple users through advance

reservation, resulting in varying bandwidth availability in future time. We investigate a

comprehensive set of advance bandwidth scheduling problems that are categorized into the

following four classes.

1) Basic bandwidth scheduling. We formulate four types of problems by exhausting

the combinations of different path and bandwidth constraints: fixed/variable path with

fixed/variable bandwidth (F/VP-F/VB) with the same objective to minimize the data trans-

fer end time for a given date size. For VPFB and VPVB, we further consider two subcases

where the path switching delay is negligible or non-negligible. We propose an optimal al-

gorithm for each of these problems except for FPVB and VPVB with non-negligible path

switching delay, which are proved to be NP-complete and non-approximable, and then

tackled by heuristics.

iii

2) Bandwidth scheduling in LCC-overlays. We investigate two problems in this class:

fixed-bandwidth path (FBP) and varying-bandwidth path (VBP) with the same objective

to minimize the data transfer end time for a given data size. We prove both problems to

be NP-complete and non-approximable, and propose heuristic algorithms using a gradual

relaxation procedure on the maximum number of links from each LCC allowed for path

computation.

3) Distributed bandwidth scheduling. We propose distributed algorithms to meet four

basic bandwidth scheduling requests: fixed bandwidth in a fixed slot, highest bandwidth in

a fixed slot, first slot with fixed bandwidth and duration, and all slots with fixed bandwidth

and duration. These algorithms are developed through a rigorous extension of the classical

breadth first search and Bellman-Ford algorithms to a complete distributed manner.

4) Periodical bandwidth scheduling. We consider two problems in this class: multiple

data transfer allocation (MDTA) and multiple fixed-slot bandwidth reservation (MFBR),

both of which schedule multiple user requests accumulated in a certain time window. For

MDTA, we design an optimal algorithm and provide its correctness proof; while for MFBR,

we prove it to be NP-complete and propose a heuristic algorithm.

iv

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Background . 1

1.2 An Overview of Advance Bandwidth Scheduling 4

1.2.1 Basic Bandwidth Scheduling . 5

1.2.2 Bandwidth Scheduling in LCC-overlays 6

1.2.3 Distributed Bandwidth Scheduling 7

1.2.4 Periodical Bandwidth Scheduling 8

1.3 Technical Contributions . 9

2 Related Work 11

3 Control Plane Framework and Network Model 15

3.1 Control Plane Framework . 15

3.2 Network Model . 17

4 Basic Bandwidth Scheduling 19

4.1 Problem Formulation . 19

4.2 Complexity Analysis and Algorithm Design 23

4.2.1 Optimal Scheduling Algorithm for FPFB 24

4.2.2 Optimal and Heuristic Scheduling Algorithms for FPVB 26

4.2.3 Optimal Scheduling Algorithm for VPFB-0 35

4.2.4 Optimal Scheduling Algorithm for VPFB-1 36

4.2.5 Optimal Scheduling Algorithm for VPVB-0 40

4.2.6 Optimal and Heuristic Scheduling Algorithms for VPVB-1 41

4.3 Performance Evaluation . 50

4.3.1 Simulation Setup . 50

4.3.2 Comparison of Algorithms for FPVB 51

4.3.3 Comparison of Algorithms for VPVB-1 54

v

5 Bandwidth Scheduling in LCC-overlays 59

5.1 LCC Model and Problem Formulation . 59

5.2 Complexity Analysis . 62

5.2.1 WPC is Approximable . 63

5.2.2 FBP and VBP are Non-approximable 66

5.3 Algorithm Design . 68

5.3.1 Heuristic Algorithm for FBP . 68

5.3.2 Heuristic Algorithm for VBP . 72

5.4 Performance Evaluation . 75

5.4.1 Comparison of Algorithms for FBP 75

5.4.2 Comparison of Algorithms for VBP 79

6 Distributed Bandwidth Scheduling 81

6.1 Problem Formulation . 81

6.2 Distributed Routing and Bandwidth Scheduling Algorithms 82

6.2.1 Fixed-Bandwidth . 83

6.2.2 Highest-Bandwidth . 89

6.2.3 First-Slot and All-Slots . 93

6.3 Performance Evaluation . 95

6.3.1 Comparison of Algorithms for Fixed-bandwidth 96

6.3.2 Comparison of Algorithms for Highest-bandwidth 97

6.3.3 Comparison of Algorithms for First-slot and All-slots 98

7 Periodical Bandwidth Scheduling 101

7.1 Problem Formulation . 101

7.2 Complexity Analysis and Algorithm Design 102

7.2.1 Optimal Algorithm for MDTA . 103

7.2.2 MFBR is NP-Complete . 105

7.2.3 Heuristic Algorithms for MFBR 107

7.3 Performance Evaluation . 111

7.3.1 Comparison of Greedy and MBDPA 111

7.3.2 Periodic Scheduling vs. Instant Scheduling 114

8 Conclusion 118

Bibliography 119

vi

List of Figures

3.1 Control plane framework : function components, control flow, and data flow. 16

3.2 An aggregated TB list that combines the individual TB lists of link 1 and

link 2, whose bandwidths are marked with different weights. 18

4.1 A network with two time slots. 21

4.2 The optimal solutions to six bandwidth scheduling problems. 22

4.3 An example for the Complete Start Time Search algorithm. 26

4.4 AT B′ construction for an FPVB instance. 29

4.5 A dynamic programming procedure that computes β [p,q,k] using a tabular,

bottom-up approach. 39

4.6 The data transfer in different path switching schemes. 44

4.7 Illustration of the GreedyV PVB−1 algorithm. 48

4.8 The percentage of networks in which MinFPV B achieves the optimality in

a series of 200 simulated networks of 8 nodes and 12 links under varying

reservation loads. 53

4.9 Comparison of data transfer end time (mean and standard deviation) be-

tween MinFPV B and GreedyFPVB in 50 simulated networks of 50 nodes

and 200 links under varying reservation loads. 53

vii

4.10 Comparison of data transfer end time (mean and standard deviation) be-

tween MinFPV B and GreedyFPVB in 50 simulated networks of 50 nodes

and 200 links with varying data sizes. 54

4.11 The percentage of networks in which MinVPV B−1 achieves the optimality

in a series of 200 simulated networks of 8 nodes and 12 links under varying

reservation loads. 55

4.12 Comparison of data transfer end time (mean and standard deviation) be-

tween MinVPV B− 1 and GreedyV PVB− 1 in 50 simulated networks of

50 nodes and 200 links under varying reservation loads. 56

4.13 Comparison of data transfer end time (mean and standard deviation) be-

tween MinVPV B− 1 and GreedyV PVB− 1 in 50 simulated networks of

50 nodes and 200 links with varying data sizes. 57

4.14 Comparison of data transfer end time (mean and standard deviation) be-

tween MinVPV B− 1 and GreedyV PVB− 1 in 50 simulated networks of

50 nodes and 200 links with varying path switching delays. 57

5.1 An example of the LCC-overlay network of a two-layer hierarchy. 60

5.2 Construction of AT B′ in an FBP instance. 67

5.3 Performance comparison of MaxBW and the optimal algorithm in 200 sam-

ple networks with 8 overlay nodes. 77

5.4 Percentage of network instances in which MaxBW outperforms the modi-

fied Dijkstra’s algorithm versus the ratio of the overlay network size over

the lower-layer network size. 77

viii

5.5 Average bandwidth versus the ratio of the overlay network size over the

lower-layer network size. 78

5.6 Percentage of network instances in which MinVBP outperforms the mod-

ified Dijkstra’s algorithm versus the ratio of the overlay network size over

the lower-layer network size. 79

5.7 Average data transfer end time versus the ratio of the overlay network size

over the lower-layer network size. 80

6.1 An example of bandwidth reservation message processing for fixed-bandwidth

problem. 83

6.2 An example of acknowledgment message processing for fixed-bandwidth

problem. 86

6.3 An example of deadlock in Algorithm 14. 87

6.4 Acceptance rate comparison between Algorithm 14 and traceroute for fixed-

bandwidth problem. 97

6.5 Highest bandwidth comparison (mean and standard deviation) between Al-

gorithm 15 and greedy algorithm for highest-bandwidth problem. 98

6.6 Earliest start time comparison (mean and standard deviation) between Al-

gorithm 16 and greedy algorithm for first-slot problem. 99

6.7 Total length of start times comparison (mean and standard deviation) be-

tween Algorithm 16 and greedy algorithm for all-slots problem. 100

7.1 Comparison of Greedy and MBDPA under a network with 10 nodes and 40

links. 113

ix

7.2 Comparison of Greedy and MBDPA under a network with 500 nodes and

2000 links. 113

7.3 Comparison of periodic scheduling and instant scheduling in MDTA problem.116

7.4 Comparison of periodic scheduling and instant scheduling in MDTA prob-

lem under different numbers of tasks and different variances of task sizes.

Z axis denotes the performance improvement of periodic scheduling over

instant scheduling in terms of total transfer end time. 116

7.5 Comparison of periodic scheduling and instant scheduling in MFBR problem.117

x

Chapter 1

Introduction

1.1 Background

A number of large-scale applications in various fields of science, engineering and business

are generating colossal amounts of data, on the order of terabytes currently and petabytes or

even exabytes in the near future, which must be transferred over wide geographical areas

for remote operations. Typical examples include next-generation computational science

applications where large simulation data sets produced on supercomputers are shared by

a distributed team of collaborative scientists [1–3], or a large chain of departmental stores

whose transaction records or inventories are synchronized during off-peak hours. Since

the data providers and consumers in these distributed applications are generally located at

different sites across the nation or around the globe, high-speed connections are needed to

support a variety of remote tasks including data mining, consolidation, alignment, storage,

visualization, and analysis [35]. Unfortunately, the conventional shared public networks

such as the Internet are not adequate to meet the unprecedented data transfer challenge

posed by the sheer data volume of such scales.

1

High-performance networks that provision dedicated links have proved to be very suc-

cessful in meeting the large data transfer needs in many applications. The high-performance

networking requirements in large-scale applications belong to two broad classes: (a) high

bandwidths, typically multiples of 10Gbps, to support bulk data transfers, and (b) stable

bandwidths, typically at much lower bandwidths such as 100s of Mbps, to support interac-

tive, steering and control operations. The current Internet technologies are severely limited

in meeting these demands. First, such bulk bandwidths are available only in the backbone,

typically shared among a number of connections that are unaware of the demands of others.

Second, due to the shared nature of packet-switched networks, Internet connections often

exhibit complicated dynamics, thereby lacking the stability needed for steering and control

operations [33].

In recent years, high-speed dedicated networks have emerged to be a promising so-

lution to support remote tasks in these data- and network-intensive applications and the

significance of high-performance networks has been well recognized in the broad science

and network research communities [35]. Several projects are currently underway to de-

velop such capabilities, including User Controlled Light Paths (UCLP) [4], UltraScience

Net (USN) [34], Circuit-switched High-speed End-to-End Transport ArcHitecture (CHEE-

TAH) [17], Enlightened [13], Dynamic Resource Allocation via GMPLS Optical Networks

(DRAGON) [5], Japanese Gigabit Network II [6], Bandwidth on Demand (BoD) on Geant2

network [7], On-demand Secure Circuits and Advance Reservation System (OSCARS) [8]

of ESnet, Internet2 ION [9], and Bandwidth Brokers [47]. These dedicated channels are

a part of the capabilities envisioned in the Global Environment for Network Innovations

(GENI) project [10].

2

The deployments of high-performance networks are expected to increase significantly

and proliferate into both public and dedicated network infrastructure across the globe in

the coming years. An evidence of this trend in production networks is reflected by In-

ternet2 and ESnet that offer IP-based Multiple Protocol Label Switching (MPLS) tunnels

and layer-2 Virtual Local Area Networks (VLANs) using OSCARS. MPLS improves the

forwarding speed of IP routers by adopting a key concept from the world of virtual-circuit

networks: a fixed-length label. MPLS is often referred to as layer-2.5, which adds a small

MPLS header between the layer-2 header and the layer-3 header in a link-layer frame.

Since modern optical networks have reached a very high transfer rate (at 40 Gbit/s and

beyond), the true advantages of MPLS do not lie in the potential increase in switching

speeds, but rather in the new traffic management capabilities that MPLS enables. OSCARS

uses MPLS and Resource Reservation Protocol (RSVP) to create virtual circuits or Label

Switched Paths (LSPs), while the management and operation of end-to-end virtual circuits

within the network are done at the layer-3 network level. All network service requests to

OSCARS requires the type of service (i.e., layer 2 or 3), the source and destination node,

the required bandwidth, and the duration of use. OSCARS supports advance reservation,

but its underlying path computation limits connections over links returned by traceroute;

hence, it does not explore all available bandwidths inside the network.

The network infrastructure including edge devices, core switches, and backbone routers

in these high-performance networks is coordinated by a management framework, namely

control plane, which is responsible for allocating link bandwidth to users, setting up end-

to-end transport paths upon request, and releasing resources when tasks are completed. As

the central function unit of a generalized control plane, the bandwidth scheduler computes

3

appropriate network paths and allocates link bandwidths to meet specific user requests

based on network topology and bandwidth availability. Hence, the performance of the

bandwidth scheduler has a critical impact on the utilization of network resources and the

satisfaction of user requests.

Given sufficient link bandwidths, the end-to-end application-level throughout still needs

to be realized by transport methods. To achieve high and stable throughput over dedicated

channels, many transport methods have been developed based on TCP enhancements [11,

21,39] or UDP with non-AIMD (Additive Increase Multiplicative Decrease) control [26,42,

48]. These transport methods provide a variety of transport capabilities such as maximizing

the link utilization, stabilizing the throughput at a fixed target rate, or aggregating multiple

data streams along different network paths.

In dedicated networks that support in-advance bandwidth provisioning, the existing

bandwidth allocations on a link in future time slots are typically specified as segmented

constant functions. The residual bandwidths on certain links are to be allocated to establish

new dedicated connections, which may be composed by concatenating several links and

matching their bandwidths in corresponding time slots.

1.2 An Overview of Advance Bandwidth Scheduling

This dissertation focuses on bandwidth scheduling and path computation algorithms that

can be applied across connection-oriented networks. The proposed bandwidth schedul-

ing problems are categorized into four classes: basic bandwidth scheduling, bandwidth

scheduling in LCC-overlays, distributed bandwidth scheduling and periodical bandwidth

scheduling.

4

1.2.1 Basic Bandwidth Scheduling

In view of disparate transport capabilities and multifarious application requirements, we

formulate four types of instant advance bandwidth scheduling problems in high-speed net-

works: (i) fixed path with fixed bandwidth (FPFB), (ii) fixed path with variable bandwidth

(FPVB), (iii) variable path with fixed bandwidth (VPFB), and (iv) variable path with vari-

able bandwidth (VPVB), with the same objective to minimize the data transfer end time

for a given transfer request with a pre-specified data size. For VPFB and VPVB that al-

low path switching during the data transfer to fully utilize network resources, two subcases

where the path switching delay is negligible are further considered, referred to as VPFB-0

and VPVB-0, or non-negligible, referred to as VPFB-1 and VPVB-1. Note that minimiz-

ing the amount of data transfer time does not necessarily minimize the data transfer end

time if the transfer start time is not specified. Note that an instant scheduling algorithm is

executed immediately upon the arrival of a new data transfer request and the bandwidths

are then reserved in advance on relevant links, while a periodical scheduling algorithm is

launched periodically in a certain time interval to schedule multiple data transfer requests

accumulated during that interval. We published this work in [30, 31].

Among the proposed scheduling problems, FPVB and VPVB-1 are proved to be NP-

complete and non-approximable, and the rest are P problems. We design an optimal

scheduling algorithm for each of the P problems with polynomial time complexity with

respect to the network size and the total number of time slots in an aggregated bandwidth

reservation table. For each of the NP-complete problems, we propose an optimal algo-

rithm with exponential-time complexity for small-scale networks, and develop a heuristic

5

approach with polynomial-time complexity for large-scale ones. The performance superi-

ority of these heuristics are illustrated by extensive simulation results in comparison with

optimal and greedy strategies.

1.2.2 Bandwidth Scheduling in LCC-overlays

A high-performance network may be an overlay network residing over an IP network. The

nodes in these high-performance overlay networks are connected by virtual or logical links,

each of which corresponds to a path consisting of a number of physical links in the under-

lying network. If multiple overlay links share a common underlying link segment, the

capacities of these overlay links are correlated and their total bandwidth is constrained by

the bandwidth of the shared link segment. For example, in overlay networks built over

wavelength division multiplexing (WDM) networks, routers are interconnected through

wavelength channels. Since each optical fiber carries multiple wavelength channels, these

channels are correlated in capacity. We consider a model of overlay networks with linear

capacity constraints (LCC), which is first proposed in [49]. The capacities of overlay links

in an LCC-overlay network are represented by variables and the link correlations are for-

mulated as linear constraints of link capacities. The LCC model is a simple way to capture

the link correlations in an overlay network, which only requires the addition of a set of

linear capacity constraints to the overlay network.

We study two advance bandwidth scheduling problems for a data transfer request in

LCC-overlay networks: Fixed-Bandwidth Path (FBP) and Variable-Bandwidth Path (VBP),

with the same objective to minimize the data transfer end time for a given data size. These

two problems are proved to be NP-complete and non-approximable. We further study a

6

subproblem of the widest-path with liner capacity constraints (WPC) problem, which is

first proposed and proved to be NP-complete in [49]. We provide the upper bound of the

approximation ratio of any approximate algorithm for the WPC problem and propose an

approximate algorithm that gradually relaxes the maximum number of links from each

LCC allowed for path computation. This algorithm serves as the base of the solutions to

the FBP and VBP problems with necessary adaptations.

1.2.3 Distributed Bandwidth Scheduling

A large number of scheduling algorithms have been developed for centralized advance

bandwidth reservation in high-performance networks [19]. These centralized scheduling

schemes imply the use of a centralized control plane. Although feasible in small-scale

networks, e.g., UltraScience netowrk [34], such centralized management pose significant

reliability and scalability challenges as the network size increases. Hence, it is necessary

to develop distributed advance bandwidth reservation solutions for large-scale networks.

We formulate four basic advance bandwidth scheduling problems: (i) fixed bandwidth in

a fixed slot, (ii) highest bandwidth in a fixed slot, (iii) first slot with fixed bandwidth and

duration, and (iv) all slots with fixed bandwidth and duration. We propose distributed

path computation and bandwidth scheduling algorithms for these scheduling problems.

These algorithms are based on a rigorous extension of the classical breadth first search

and Bellman-Ford algorithm to a complete distributed environment, and exhibit several

salient features including loop free, fault tolerance, and time efficiency. We published this

work in [41].

7

1.2.4 Periodical Bandwidth Scheduling

We study two periodic bandwidth scheduling problems: multiple data transfer allocation

(MDTA) and multiple fixed-slot bandwidth reservation (MFBR), both of which schedule a

number of user requests accumulated in a certain period. MDTA is to assign multiple data

transfer requests on several pre-specified network paths to minimize the total data trans-

fer end time, while MFBR is to satisfy multiple bandwidth reservation requests, each of

which specifies a bandwidth and a time slot. A real-life network example using MDTA

is to schedule the transfer of a large number of data sets between two remote sites where

core switches are deployed and connected with multiple parallel dedicated OC-192 SONET

links as is the case in UltraScience Net [34]. A practical application scenario using MFBR

is to establish several control channels between collaborative sites for computational mon-

itoring and steering operations that typically require smooth and stable data flows with

constant bandwidths during certain time slots. We published this work in [29].

For MDTA, we design an optimal algorithm and provide its correctness proof, while for

MFBR, we prove it to be NP-complete by reducing from the Disjoint Path Problem with

Red and Blue arcs (DPPRB) [37] and propose a heuristic algorithm, Minimal Bandwidth

and Distance Product Algorithm (MBDPA), whose performance is compared with a greedy

approach. We also conduct performance comparison between periodic scheduling and in-

stant scheduling and identify suitable operational conditions where periodic scheduling

outperforms instant scheduling in terms of minimizing total transfer end time or maximiz-

ing the number of satisfied reservations.

8

1.3 Technical Contributions

The technical contributions of our work in this dissertation are summarized as follows:

1. We proposed a generalized control plane framework and constructed realistic net-

work models for high-speed networks that support advance bandwidth reservations.

2. We considered a comprehensive set of advance bandwidth scheduling problems, in-

cluding instant scheduling and periodical scheduling, centralized scheduling and dis-

tributed scheduling, as well as scheduling in LCC-overlays. For each of these prob-

lems, we conducted an in-depth investigation through rigorous complexity analysis

and algorithm design. To the best of our knowledge, we are among the first to for-

mulate and study these advance bandwidth scheduling problems.

3. We conducted extensive simulation-based performance comparisons using a large

set of simulated networks, which show that the proposed heuristics achieve better

performance than existing methods in terms of optimization goal, time complexity,

or deployment flexiblity. The proposed heuristics have great potential to improve

the utilization of high-speed dedicated networks and the performance of large-scale

scientific applications that depend on these networks for data transfer.

The rest of the dissertation is organized as follows. An extensive survey of bandwidth

scheduling is conducted in Chapter 2. In Chapter 3, we describe the framework of a gen-

eralized control plane and our network model. In Chapter 4, we investigate four types of

basic instant scheduling problems. In Chapter 5, we introduce the LCC-overlay network

9

model and study two advance bandwidth scheduling problems in LCC-overlays. In Chap-

ter 6, we propose distributed algorithms for four advance bandwidth scheduling problems.

In Chapter 7, we study two periodic scheduling problems: MDTA and MFBR. We conclude

our work in Chapter 8.

10

Chapter 2

Related Work

As dedicated networks are increasingly deployed under different high-performance net-

working initiatives, many scheduling algorithms have been designed for advance band-

width reservation. We provide a broad survey of these efforts below.

Instant scheduling problems have been extensively studied in various network contexts

and many scheduling techniques have been proposed. In [35], Rao et al. described four ba-

sic scheduling problems with different constraints on target bandwidths and time slots, i.e.

specified bandwidth in a specified time slot, earliest available time with a specified band-

width and duration, highest available bandwidth in a specified time slot, and all available

time slots with a specified bandwidth and duration. The solutions to the first three prob-

lems are straightforward extensions of the classical Dijkstra’s algorithm, while the last one

is based on an extension of Bellman-Ford algorithm. Similar problems are also discussed

in [36] with a detailed description of the solution to each of these problems. Guerin et al.

investigated these basic scheduling problems with several extensions in [27] with a focus

on increasing the flexibility of services. The scheduling algorithm proposed by Cohen et al.

in [18] considers the flexibility of transfer start time and the capability of path switching

11

between different paths during a connection to improve network utilization. In [25], Grim-

mell et al. formulated a dynamic quickest path problem, which deals with the transmission

of a message from a source to a destination with the minimum end-to-end delay over a

network with propagation delays and dynamic link bandwidth constraints. In [40], files

are transferred with varying bandwidths in different time slots in a simple case where the

path is pre-specified. Ganguly et al. generalized the problem of finding an optimal path

in a graph with varying bandwidths to minimize the total transfer time and proposed an

optimal algorithm with exponential complexity in [22]. They also attempted to find the

minimum number of path switchings for a file transfer in a specified number of time slots.

Their first problem is similar to FPVB, but the authors did not provide this problem’s NP-

completeness and non-approximability proofs. In [24], Gorinsky et al. proposed a Virtual

Finish Time First algorithm to schedule incoming files in a preemptive manner to mini-

mize total transfer end time on a dedicated channel. In [38], Shen et al. studied advance

lightpath scheduling in WDM optical networks using a two-phase approach, in which they

re-provision some already scheduled lightpaths to re-optimize the network performance in

the second phase.

To the best of our knowledge, there are very few studies on advance bandwidth reser-

vation in LCC-overlay networks. The model of overlay networks with linear capacity con-

straints (LCC) is first proposed by Zhu et al. in [49], where they studied two network flow

problems, widest-path (i.e. maximum-bandwidth single-path unicast) and maximum-flow

(i.e. maximum-bandwidth multiple-path unicast), with the addition of LCC. They proved

that widest-path with LCC is NP-complete, but did not provide any approximate algorithm.

12

They formulated the problem of maximum-flow with LCC as a linear programming prob-

lem and propose an algorithm for it. The shared risk link group (SRLG) is a network model

related to the link LCC in IP over WDM networks [44], where the failure of an optical fiber

that carries multiple IP logical links results in the failures of all the logical links that depend

on it.

Most of the aforementioned work is primarily focused on centralized scheduling of

bandwidths provisioned by dedicated networks. Further more, most existing network sys-

tems (e.g. OSCARS in ESnet or UltraScience Net) that support advance bandwidth reser-

vations are managed by a centralized control plane, and a centralized repositories is used

to maintain all the bandwidth reservations on all the network links. In [45], Xie et al.

proposed a distributed link-state routing solution for advance bandwidth reservation.

Although network researchers are increasingly realizing the importance of scheduling

multiple bandwidth requests to improve the utilization of expensive network resources,

periodic scheduling problems in dedicated networks have not received as much attention

as instant scheduling problems. However, there is a great deal of similar work on other

networking subjects including optical burst switching and traffic engineering. In optical

burst switching, the header of a burst is sent in advance of the data burst to reserve a

wavelength channel at each optical switching node along the path. A popular algorithm,

named LAUC-VF for scheduling each burst as soon as its head arrives at the node is pro-

posed in [46]. Instead of scheduling each burst immediately upon the arrival of its head,

Phung et al. defer making the scheduling decision until right before the arrival of the data

burst in order to have full knowledge about other bursts, hence reducing unnecessary burst

dropping [32]. In some traffic engineering tasks, multiple network paths between a pair of

13

routers are established, which enables network traffic to be split among these disjoint paths

in order to reduce latency and balance traffic loads. Once multiple paths are established,

individual packets can be allocated to one of these paths using different policies including

Round Robin, hash function applied to the source and destination pair [15], and Oppor-

tunistic Multipath Scheduling, which opportunistically favors low-delay high-throughput

paths while simultaneously ensuring that the traffic splitting ratios defined by the routing

policy are satisfied [16]. The scheduling problems addressed in this dissertation differ from

the aforementioned work. In MDTA problem, each file cannot be split among paths during

transfer and must be strategically allocated in its entirety to one of the predefined paths to

minimize the total waiting time. The MFBR problem is an extension of the fixed-slot band-

width reservation problem proposed in [36], which schedules multiple fixed-slot bandwidth

reservations to maximize the number of successful bandwidth reservations.

14

Chapter 3

Control Plane Framework and Network

Model

3.1 Control Plane Framework

We consider a generalized control plane to support in-advance reservation of dedicated

channels over high-speed networks [35]. The control plane framework shown in Figure 3.1

consists of the following components: (a) client interface, (b) server front-end, (c) user

management, (d) token management, (e) database management, (f) bandwidth scheduler,

and (g) signaling daemon. The interactions between these components take place either

over the data plane or control plane to accomplish the tasks of user-specified bandwidth

reservation, path computation and network signaling.

Depending on the system configuration, the control plane operations can be coordinated

by a central management node or by a set of nodes distributed over a network. A user can

remotely interact with the system through a web browser, or a web client, for example, us-

ing SOAP (Simple Object Access Protocol)-based XML message exchange. Accordingly,

the server front-end could deploy a web server or web service that accepts bandwidth reser-

vation requests from users with valid credentials. The user management module supports a

15

special group of users with administrative privileges to add, delete or modify user account

information.

Client interface

User

management

Token

management

Server front-end (web server/web services)

User authentication for login

Token authentication for bw request

database management

User information
 Token information

Network topology/

device connectivity

information

Link aggregate bw

reservation data

Pending/active/

expired signaling

files

Bandwidth

scheduler

Signaling

daemon

Bandwidth reservation request
Release/reclaim
Add/delete/modify

Data flow
Control flow

Figure 3.1: Control plane framework : function components, control flow, and data flow.

User sites are connected through their assigned ports on the edge switches in the net-

work infrastructure. In this framework, we use token-based scheme for authorization and

coordination of channel setup. Multiple tokens are provided to users for their assigned

ports, which they can release to other users and reclaim them as needed. A channel reser-

vation request is honored only if the tokens at both ends are either owned by or released to

the user making the request. It is implicitly assumed that users at both ends will work out

their connectivity mechanisms and policies before the tokens are released.

16

As the central component of a control plane, the bandwidth scheduler computes one

path or a set of paths and allocates appropriate link bandwidths to satisfy user data transfer

requests. Upon the completion of path computation, a signaling record is generated and

the bandwidth allocation of each link along that path is updated accordingly. The signal-

ing daemon periodically examines active or expiring signaling records. For each active

or expiring signaling record, the daemon invokes appropriate signaling scripts to set up

or tear down the connections along the computed or established path, respectively. The

aggregate bandwidth reservation data for each component link is updated if the signaling

actions are successful. Note that the time interval at which the signaling daemon is periodi-

cally activated must be chosen to be compatible with the finest resolution of the bandwidth

reservation time.

3.2 Network Model

We represent a dedicated network as a graph G = (V,E) with n nodes and m links, where

each link l ∈ E maintains a list of residual bandwidths specified as segmented constant

functions of time. A 3-tuple of time-bandwidth (TB) (tl[i], tl[i+1],bl[i]) is used to represent

the residual bandwidth bl[i] of link l at time interval [tl[i], tl[i+ 1]], i = 0,1,2, . . . ,Tl − 1,

where Tl is the total number of time slots of link l. tl[0] denotes the current time point,

and tl[i] (i > 1) denotes a future time point. tl[Tl] = +∞, which indicates that there is no

bandwidth reservation on link l after tl[Tl −1] and therefore bl[Tl −1] has the full bandwidth

of link l.

A network path is defined as an ordered set of nodes from the source to the destina-

tion over one or more links or hops. Before computing paths, the TB lists of all links

17

are combined to build an Aggregated TB (AT B) list, where the residual bandwidths of all

links are stored in each intersected time slot. As shown in Fig. 3.2, a set of new time slots

are created by combining the time slots of all links l ∈ E, and the residual bandwidths of

each link are mapped to the AT B list in each new time slot. The ABT list is denoted as

(t[0], t[1],b0[0],b1[0], ...,bm−1[0]), ...,(t[T − 1], t[T],b0[T − 1],b1[T − 1], ...,bm−1[T − 1]),

where T is the total number of new time slots after the aggregation of TB lists of m links.

The time slot i corresponds to the time interval [t[i], t[i+1]], and t[T] = +∞.

R
e

s
id

u
a

l
B

a
n

d
w

id
th

1
[0]t

1
[2]t

1
[1]t

1
[3]t

2
[0]t

2
[2]t

2
[1]t

2
[3]t

[0]t [2]t[1]t [4]t

TB list for link 1

Aggregated TB

R
e

s
id

u
a

l
B

a
n

d
w

id
th

R
e

s
id

u
a

l
B

a
n

d
w

id
th

[3]t [5]t

TB list for link 2

Figure 3.2: An aggregated TB list that combines the individual TB lists of link 1 and link

2, whose bandwidths are marked with different weights.

18

Chapter 4

Basic Bandwidth Scheduling

4.1 Problem Formulation

In view of different transport constraints and application requirements, we formulate four

types of advance bandwidth scheduling problems for minimal data transfer end time as

follows: Given a graph G = (E,V) with an AT B list, source vs and destination vd , and data

size δ ,

• FPFB: compute a fixed path from vs to vd with a constant (fixed) bandwidth;

• FPVB: compute a fixed path from vs to vd with varying bandwidths across multiple

time slots;

• VPFB: compute a set of paths from vs to vd with the same (fixed) bandwidth at

different time slots;

• VPVB: compute a set of paths from vs to vd with varying bandwidths at different

time slots

with the common goal to minimize the data transfer end time. In the above scheduling

problems, the service is provisioned for a certain advance bandwidth reservation request

19

defined by a set of parameters including source vs, destination vd , path property (either

fixed or variable), bandwidth constraint (either fixed or variable), and data size δ . A user

request is classified into one of four types based on the path property (fixed/variable) and

bandwidth constraint (fixed/variable) in the user input.

In both VPFB and VPVB problems, multiple paths are used in a sequential order and a

path switching may be needed between two different paths computed in two adjacent time

slots to fully utilize network resources. During path switching, the signaling daemon in

the control plane need to send and invoke certain signaling scripts to tear down the exist-

ing path and set up a new path to continue the data transfer. The path switching generally

incurs a certain amount of overhead ranging from milliseconds to seconds, depending on

the signaling message delay and the number of affected switches. If the overhead is rela-

tively small compared to the rate adjustment interval of a higher-layer transport protocol,

the path switching can be done transparently. However, it may not be always beneficial to

do path switching in some scenarios, especially when the path switching delay τ is com-

parable to the transfer time in a time slot. Here, the switching delay τ is assumed to be

a constant. If the path switching delay is negligible (i.e. τ = 0), these two problems are

referred as VPFB-0 and VPVB-0; otherwise, (i.e. τ > 0), they are referred as VPFB-1 and

VPVB-1. In the extreme case where the path switching delay is so large compared to the

time slot that performing any path switching would negatively affect the data transfer end

time, VPFB-1 reduces to FPFB and VPVB-1 reduces to FPVB. In FPVB, the source node

of the computed path needs to adjust the sending rate according to the path bandwidth in

each time slot. Such rate adjustment would also incur a delay, which is relatively small and

therefore is ignored.

20

For illustration purposes, we use a numerical example to explain the above problems.

As shown in Fig. 4.1, network G has 4 nodes with designated source vs and destination vd ,

and 5 links, each of which has 2 time slots of unit size. The residual bandwidths in these

2 time slots are labeled on each link. The data size δ = 8 units, the path switching delay

τ = 0.1 unit of time and the current time point is 0.

5, 7s
v

1
v

2
v

d
v

Figure 4.1: A network with two time slots.

The optimal solutions to these six bandwidth scheduling problems in the above example

are shown in Fig. 4.2. For FPFB, the optimal path is vs − v2 − vd with the minimal data

transfer end time 1+ 8
10

= 1.8. Note that the transfer should start at time point 1 instead of

0 because the available bandwidth 10 in the second time slot is much larger than that of the

first time slot. For FPVB, the optimal path is vs −v2−vd with bandwidth 3 in the first time

slot and bandwidth 10 in the second time slot, which results in the minimal data transfer

end time 3
3
+ 5

10
= 1.5. For VPFB-0, the widest path in the first time slot is vs−v1−v2−vd

with bandwidth 5 and the widest path in the second time slot is vs−v2−vd with bandwidth

10, the maximum available fixed bandwidth spanning both time slots is 5, which results in

the minimal data transfer end time 8
5
= 1.6 with the transfer start time at 0. For VPFB-1,

the problem reduces to FPFB if no path switching is performed, and the data transfer end

time is 1.8; if the paths are switched between these two time slots, the data transfer end

21

1 1.80 t

b

10

2s dv v v(a) FPFB

1 1.50

b

10

(b) FPVB

3

1 1.60

b

(c) VPFB-0

1 2s dv v v v

5

1 1.70

b

(d) VPFB-1 5

1.1

10

b

(e) VPVB-0 5

1.3

10

switch

switch

1 1.350

b

(f) VPVB-1 5

0.9

2s dv v v

2s dv v v

2s dv v v

1 2s dv v v v

1 2s dv v v v

1 2s dv v v v

2s dv v v

2s

d

v v

v

2s

d

v v

v

10

t

t

t

t

t

switch

switch

Figure 4.2: The optimal solutions to six bandwidth scheduling problems.

22

time of VPFB-1 is equal to the data transfer end time of VPFB-0 plus the path switching

delay, i.e. 1.6 + τ = 1.7. Therefore, the path switching is profitable in this case. For VPVB-

0, using the widest paths calculated for VPFB-0, it has the minimal data transfer end time

5
5
+ 3

10
= 1.3. For VPVB-1, since the bandwidth of the widest path in the first time slot is

smaller than that in the second time slot, the path switching is performed at the end of the

first time slot (time interval [0.9,1]), and its data transfer end time is 1+ 3.5
10

= 1.35.

Among these problems, FPFB represents the most stringent transport conditions by

fixing both path and bandwidth, while VPVB is the most flexible transport scheme where

the network resources can be fully utilized to achieve the minimum data transfer end time.

Since FPFB and VPFB restrict the bandwidth to a fixed value during data transfer, it may

not be always optimal to start data transfer immediately at the first possible time slot. These

two schemes are mostly suited for transport methods that can stabilize at a fixed target

rate such as FRTP [48], Tsunami [12], Hurricane [43], and PA-UDP [20]. FPVB and

VPVB use variable bandwidths during transfer and therefore the transfer should always

start immediately. These two schemes are particularly suited for transport methods that can

dynamically adapt their source rates to different levels such as RAPID [14], SABUL [26],

and RUNAT [42].

4.2 Complexity Analysis and Algorithm Design

Table 4.1 summarizes the computational complexities and optimal algorithms for the pro-

posed six bandwidth scheduling problems. Since FPVB and VPVB-1 are NP-complete,

their optimal algorithms are of exponential complexity and are only meant for small-scale

networks. Furthermore, since FPVB and VPVB-1 can not be approximated unless P = NP,

23

we design heuristic algorithms with polynomial-time complexity for them in large-scale

networks.

Table 4.1: Problem Complexities and Algorithms.

Problem Complexity Algorithm

FPFB P OptFPFB

FPVB NP-complete OptFPVB, MinFPVB

VPFB-0 P OptVPFB−0

VPFB-1 P OptVPFB−1

VPVB-0 P OptVPV B−0

VPVB-1 NP-complete OptVPV B−1, MinVPV B−1

A feasible solution to a bandwidth scheduling problem consists a number of scheduling

components. Each scheduling component is a 4-tuple that consists a path from source to

destination, the bandwidth along the path, the data transfer start time and end time. A

feasible solution to FPFB has one scheduling component, while others may have more. For

easy explanation, each scheduling algorithm described below only returns the data transfer

end time, which is the optimization objective of these scheduling problems.

4.2.1 Optimal Scheduling Algorithm for FPFB

FPFB takes as input a graph G = (V,E) with an ABT list for all links l ∈ E, source vs and

destination vd , and data size δ , and computes a fixed path with a constant bandwidth from

source to destination. We propose an optimal Complete Start Time Search algorithm for

FPFB, referred to as OptFPFB, whose pseudocode is provided in Algorithm 1. The output

of the algorithm is the minimal data transfer end time tend . Since it may not be always

optimal to start data transfer immediately, the algorithm varies the transfer start time slot p

from 0 to q for a given data transfer end time slot q, and checks whether there exists any

24

feasible p such that the data of size δ can be transferred during the time slot range [p,q]

(i.e. time interval [t[p], t[q+ 1]]). If there does not exist any feasible path, the algorithm

repeatedly increases q by 1; otherwise, the algorithm computes the optimal start time slot

p and data transfer end time tend by considering all possible p values and terminates. Here,

the bandwidth β of the widest path can be calculated by an extended Dijkstra’s algorithm.

The algorithm guarantees that the returned data transfer end time is minimized since all

possible transfer time slot ranges are examined. The time complexity of this algorithm is

O(T 2 ·m · lgn+T 3 ·m).

Algorithm 1 OptFPFB(G,ATB,vs,vd ,δ)

tend = ∞;

for q = 0 to T −1 do

for p = 0 to q do

for all l ∈ E do

bl = min
p≤i≤q

(bl[i]);

end for

β = bandwidth of the widest path from vs to vd during time slot range [p,q] based

on bl , ∀l ∈ E;

if β · (t[q+1]− t[p])≥ δ , and tend > t[p]+δ/β then

tend = t[p]+δ/β ;

end if

end for

if tend < ∞ then

break;

end if

end for

return tend .

An example for the Complete Start Time Search algorithm is shown in Fig. 4.3. First,

we construct a complete start time slots table, where the cell in the first row only contains

the first time slot. If the data cannot be completely transferred during the time interval

[t[0], t[1]], we increase data transfer end time slot q by 1 and advance to the second row,

25

[1]endt

[[0], [1]]t t

[[0], [2]]t t

[2]
end

t [3]endt [4]
end

t

[[1], [2]]t t

[[0], [3]]t t [[1], [3]]t t [[2], [3]]t t

[[0], [4]]t t [[1], [4]]t t [[2], [4]]t t [[3], [4]]t t

q

p

Figure 4.3: An example for the Complete Start Time Search algorithm.

where each cell considers the second time slot as the data transfer end time slot. If the data

cannot be completely transferred before t[2], we again increase q by 1 and advance to the

third row. This search process continues until we reach a row where the data transfer request

can be satisfied (i.e. t[4]). We try all possible start time points t[0], t[1], t[2], and t[3], and

compute the corresponding data transfer end time tend [1], tend[2], tend[3] and tend[4], based

on a comparison of which, we obtain the optimal solution with the minimal data transfer

end time.

4.2.2 Optimal and Heuristic Scheduling Algorithms for FPVB

We first prove that FPVB is NP-complete and non-approximable, which indicates that there

does not exist any polynomial-time optimal algorithm or approximate algorithm unless P

= NP. We then propose an optimal algorithm of exponential complexity for small-scale

networks and a heuristic algorithm for large-scale ones.

26

FPVB is NP-complete

We prove that FPVB is NP-complete by reducing from the 0-1 Total Bandwidth (0-1 TB)

problem, whose NP-completeness is shown in [27]. The decision version of FPVB is as

follows: Given a graph G = (E,V) with an AT B list for all links l ∈ E, source vs and

destination vd , data size δ , does there exist a fixed path from vs to vd with varying band-

widths across multiple time slots such that the data can be completely transferred along the

path during the time interval [0, tend]? Without loss of generality, we suppose that the data

transfer request is made at time point t[0] = 0.

Theorem 1. FPVB is NP-complete.

Proof. We first show that FPVB ∈ NP. Given a solution (a path from vs to vd with a

constant bandwidth) to FPVB, one can verify in polynomial time the validity of the solution

by checking whether or not the data size transferred on the path during the time interval

[0, tend] is greater than or equal to δ . This check obviously can be done in polynomial time.

We now reduce the 0-1 TB problem [27] to FPVB. The decision version of the 0-1

TB problem is defined as follows: Given a graph G = (E,V) with an AT B list of either

0 or 1 available bandwidth for all links l ∈ E at each time slot of unit length, source vs

and destination vd , does there exist a path from vs to vd such that during the time interval

[0, tend], the number of time slots in which all path links have a bandwidth value of 1 is at

least β?

Let (G,AT B,vs,vd, tend,β) be an arbitrary instance of 0-1 TB. We construct an instance

(G′,AT B′,v′s,v
′
d, t

′
end,δ) of FPVB from the instance (G,AT B,vs,vd , tend,β) in polynomial

time such that the data of size δ can be completely transferred along a path from v′s to v′d

27

during the time interval [0, t ′end], if and only if there exists a path from vs to vd in G that

the number of time slots in which all path links have a bandwidth value of 1 is at least β

during the time interval [0, tend]. We set G′ = G, T B′ = T B, v′s = vs, v′d = vd , t ′end = tend ,

and δ = β . Clearly, this instance construction can be done in polynomial time.

Suppose that there exists a path P from vs to vd in G that the number of time slots in

which all path links have a bandwidth of 1 is at least β during interval [0, tend]. We can find

a corresponding path P′ in G′, where P′ = P. Since one can transfer 1 unit of data in each

unit time slot with a bandwidth of 1, the accumulated data size transferred along P′ during

the entire time interval is at least β . Therefore, the data of size δ = β can be completely

transferred during the time interval [0, t ′end] along P′. Hence, P′ composes a solution to

FPVB.

Conversely, let P′ be the path from v′s to v′d and the data of size δ can be completely

transferred along the path during the time interval [0, t ′end]. We can find a corresponding

path P in G, where P = P′. Obviously, the number of time slots in which all path links have

a bandwidth value of 1 is at least β = δ during the time interval [0, tend], since transferring

1 unit of data requires one unit time slot in which all path links have a bandwidth value of

1. Hence, P composes a solution to 0-1 TB. This concludes the proof.

FPVB is Non-approximable

Theorem 2. For any polynomial-time computable function f (n,m), FPVB cannot be ap-

proximated within an approximation ratio of f (n,m), unless P = NP.

Proof. Assume that there exists an approximate algorithm with an approximation ratio

of f (n,m) for FPVB. We show that this assumption implies a polynomial-time optimal

algorithm for the 0-1 TB problem [27].

28

Let (G,ATB,vs,vd , tend,β) be an arbitrary instance of the 0-1 TB decision problem.

We construct a corresponding instance (G′,AT B′,v′s,v
′
d ,δ) of FPVB in polynomial time by

setting G′ = G, v′s = vs , v′d = vd and δ = β . AT B′ consists of tend · (f (n,m)+1) time slots,

which is divided into three segments as shown in Fig. 4.4. The available bandwidth for all

links in AT B′ is the same as that in AT B during time interval [0, tend], while the available

bandwidth for all links in AT B′ is 0 during time interval [tend, tend · f (n,m)] and is 1 during

time interval [tend · f (n,m), tend · (f (n,m)+1)].

We apply the approximate algorithm to the FPVB instance (G′,AT B′,v′s,v
′
d,δ). Obvi-

ously, the approximate algorithm can find a path from v′s to v′d such that the data of size

δ can be completely transferred along the path during time interval [0, tend · f (n,m)] if and

only if there exists a solution to the 0-1 TB instance, since the size of data transferred

during time interval [tend, tend · f (n,m)] is 0 in the FPVB instance. Therefore, an f (n,m)

approximate algorithm finds a solution to the 0-1 TB problem whenever one exists. This

conflicts with the NP-completeness of the 0-1 TB problem. Proof ends.

1 ((,) 1)
end

t f n m0 t

b

1

2 3

…...

end
t (,)

end
t f n m

endt ((,) 1)endt f n m endt

Figure 4.4: AT B′ construction for an FPVB instance.

29

Optimal Scheduling Algorithm for FPVB

With the same input of FPFB, we propose an optimal algorithm for FPVB, referred to

as OptFPVB, which guarantees the global minimization of the data transfer end time.

Ganguly et al. proposed an optimal routing algorithm for data transfer in time-varying

networks [22] with time slots of equal size, and their objective is to minimize the number of

time slots required for data transfer. We first develop an extension of this algorithm, named

Maximum Permutation Algorithm (MPA), which serves as the base function of OptFPVB

for FPVB. Taking as input a graph G = (V,E) with an AT B list for all links l ∈ E, source

vs and destination vd , data size δ , and a time slot range [p,q], MPA determines if there is

a path from vs to vd such that data of size δ can be transferred within the time slot range

[p,q].

To facilitate the explanation of MPA, we define several notations and operations as

follows:

E(p,β): a subset of E consisting of links whose residual bandwidths in time slot p are less

than β .

G′ = G−E(p,β): the operation of removing the links in E(p,β) from G and producing a

new graph G′.

Qp: a queue storing the bandwidths of links l ∈ E sorted in a decreasing order for time slot

p.

The pseudocode of MPA is shown in Algorithm 2, whose output is the minimum data

transfer end time tend . If tend is equal to the initial value ∞, it implies that no path exists that

30

Algorithm 2 MPA(G,AT B,vs,vd,δ , p,q)

tend = ∞;

while Qp 6= /0 do

β =dequeue(Qp);
G′ = G−E(p,β);
if ∃ path P from vs to vd in G′ then

if β · (t[p+1]− t[p])≥ δ then

tend = t[p]+δ/β ;

break;

else if p ≡ q then

break;

else

δ ′ = δ −β · (t[p+1]− t[p]);
p′ = p+1;

t ′end = MPA(G′,AT B,vs,vd ,δ
′, p′,q);

if tend > t ′end then

tend = t ′end;

end if

end if

end if

end while

return tend .

can transfer data of size δ in the time slot range of [p,q]. The algorithm starts from time

slot p and recursively calls itself by modifying the network G, advancing to the next time

slot and adjusting the residual data size. Once the links with residual bandwidths less than

β are removed from G, and there exists a path P from vs to vd in the remaining network G′,

the bandwidth of path P is at least β . For the current time step p, we consider three cases:

(i) if the bandwidth of path P is greater than or equal to the residual data size, the algorithm

computes tend and finishes successfully; (ii) otherwise if p ≡ q, the algorithm fails to find a

feasible path; (iii) otherwise, the algorithm calls itself after increasing p by 1 and updating

the residual data size δ . The algorithm examines all possible permutations of bandwidths

at different time slots to obtain the minimum data transfer end time. In the worst case,

MPA makes mq−p recursive calls, during each of which, the runtime is dominated by the

31

operation G′ = G−E(p,β) and the computation to decide whether there exists a path from

vs to vd in G′ via breadth first search. The runtime of each recursion is O(m), and the total

computational complexity of MPA is O(m ·mq−p), or O(mq−p+1).

Algorithm 3 OptFPVB(G,AT B,vs,vd,δ)

tmin = OptVPV B−0(G,ATB,vs,vd,δ);
tmax = MinFPV B(G,ATB,vs,vd,δ);
Compute the corresponding time slots of tmin and tmax, which are referred as qmin and

qmax, respectively;

while qmin ≤ qmax do

qmed = ⌊qmin+qmax

2
⌋;

tend = MPA(G,ATB,vs,vd ,δ ,0,qmed);
if tend < ∞ then

qmax = qmed ;

else

qmin = qmed +1;

end if

end while

return tend .

The pseudocode of the optimal algorithm OptFPV B that calls MPA to compute the

minimum data transfer end time is shown in Algorithm 3. We first define the possible data

transfer end time interval as [tmin, tmax], where tmin and tmax denote the minimum and max-

imum data transfer end time required to transfer data of size δ from vs to vd , respectively.

Note that the lower bound tmin can be computed by calling OptVPVB−0 we propose for

VPVB-0 in Algorithm 8 in Subsection 4.2.5, because VPVB-0 represents the most flexible

scheduling scenario and its minimal data transfer end time must be less than or equal to

that of FPVB; while the upper bound tmax can be simply computed by calling MinFPVB,

the heuristic algorithm we propose for FPVB in Algorithm 5. We then compute the corre-

sponding time slots of tmin and tmax according to the AT B list, and denote them as qmin and

qmax, respectively. Thus, the minimum end time slot required for data transfer along the

32

optimal path must fall within the time slot range [qmin,qmax]. We finally conduct a binary

search in this time slot range by calling MPA to find the minimum data transfer end time.

Since OptFPVB calls MPA at most O(lgT) times, the total complexity of OptFPVB

is O(mT · lgT). Note that this optimal algorithm may result in prohibitively long runtime

when T is large. For large T but small n, we may employ a brute-force approach by

exhausting all permutations and combinations of n− 2 nodes between vs and vd , whose

complexity is O(T · (n−1)!). When both T and n are relatively large, heuristic algorithms

are needed for practical use.

Heuristic Scheduling Algorithm for FPVB

We propose an efficient heuristic algorithm with polynomial-time complexity for FPVB,

and also design a naive greedy algorithm for performance comparison. Again, we define

several notations and operations to facilitate our explanation:

tend[v]: transfer end time for data of size δ from vs to v along the computed path.

Q: a queue of nodes sorted by their data transfer end time tend[v] in an increasing order.

b(vs,v)[i]: the bandwidth of the computed path from vs to v in the i-th time slot, which is the

bottleneck bandwidth of all component links on the path.

We propose a greedy approach based on Dijkstra’s algorithm, GreedyFPVB, whose

pseudocode is shown in Algorithm 4. The algorithm first computes the data transfer end

time for data of size δ over every single link, and assigns the data transfer end time as a

weight to each link. It then computes the narrowest path in the updated graph by extending

Dijkstra’s algorithm. Here, the narrowest path is defined as the path from the source node

33

to the destination node on which the maximum weight among all component links is mini-

mized. The total computational complexity of this greedy approach is O(m · (T + lgn)).

Algorithm 4 GreedyFPVB(G,ATB,vs,vd ,δ)

for all (u,v) ∈ E do

tend[(u,v)] = transfer end time for data of size δ from u to v (or v to u) along link (u,v)
with varying bandwidth;

end for

for all v ∈V do

tend[v] = ∞;

end for

tend[vs] = 0;

Q =V ;

while Q 6= /0 do

u = dequeue(Q);
if u ≡ vd then

break;

end if

for all v ∈ Q,(u,v) ∈ E do

if tend[v]> max(tend[u], tend[(u,v)]) then

tend[v] = max(tend[u], tend[(u,v)]);
end if

end for

end while

return tend[vd].

This greedy approach does not consider coordinating the component links on the com-

puted path. Note that the available bandwidth of the path is determined by the bottleneck

bandwidth of all component links at each time slot. We further propose another heuristic

algorithm called MinFPV B to address this issue by keeping track of the bottleneck band-

width of the path, as shown in Algorithm 5. At each relaxation step, the bottleneck band-

width from vs to the current node b(vs,v)[i] is updated. The total computational complexity

of MinFPVB is O(m · (T + lgn)).

34

Algorithm 5 MinFPVB(G,AT B,vs,vd,δ)

for all v ∈V do

tend[v] = ∞;

end for

tend[vs] = 0;

Q =V ;

while Q 6= /0 do

u = dequeue(Q);
if u ≡ vd then

break;

end if

for all v ∈ Q,(u,v) ∈ E do

if u ≡ vs then

b′(vs,v)
[i] = b(u,v)[i],∀ i ∈ [0,T −1];

else

b′(vs,v)
[i] = min(b(vs,u)[i],b(u,v)[i]),∀i ∈ [0,T −1];

end if

Compute the data transfer end time t ′end of data of size δ from vs to v with available

bandwidth b′(vs,v)
;

if tend[v]> t ′end then

tend[v] = t ′end;

b(vs,v)[i] = b′(vs,v)
[i],∀ i ∈ [0,T −1];

end if

end for

end while

return tend[vd].

4.2.3 Optimal Scheduling Algorithm for VPFB-0

VPFB-0 is to compute a set of paths from source to destination at different time slots with a

fixed bandwidth and the path switching delay between two adjacent time slots is negligible

(τ = 0). We propose an optimal algorithm for VPFB-0, referred to as OptVPFB−0, which

is also based on the Complete Start Time Search. Note that the path bandwidth are not

specified by the user, and it may not be always optimal to start the transfer immediately.

The pseudocode of OptVPFB− 0 is shown in Algorithm 6. For a give data transfer

end time slot q starting from 0, the algorithm varies the transfer start time slot p from 0

35

Algorithm 6 OptVPFB−0(G,ATB,vs,vd ,δ)

tend = ∞;

for q = 0 to T −1 do

for p = 0 to q do

βi = bandwidth of the widest path from vs to vd in time slot i, i ∈ [p,q];
β = min

p≤i≤q
(βi);

if β · (t[q+1]− t[p])≥ δ , and tend > t[p]+δ/β then

tend = t[p]+δ/β ;

end if

end for

if tend < ∞ then

break;

end if

end for

return tend .

to q and computes the bandwidth of the widest path from vs to vd in each time slot within

the time slot range [p,q]. It then computes the minimal bandwidth, which is the bottleneck

bandwidth across these time slots and considered as the fixed bandwidth for data transfer.

The algorithm repeatedly increases q by 1 until the amount of data transferred up to time

slot q is greater than the data size δ , and computes the minimal data transfer end time

by considering all possible p values. The widest path calculation in each time slot takes

O(T ·m · lgn), which is performed in advance. The total time complexity of this algorithm

is O(T ·m · lgn+T 3).

4.2.4 Optimal Scheduling Algorithm for VPFB-1

VPFB-1 considers a constant non-negligible positive path switching delay τ > 0. Since

data transfer is suspended during the period of path switching, it may not be always benefi-

cial to perform path switching between two adjacent time slots. In the extreme case where

τ is sufficiently large, any path switching causes a negative impact on the performance, and

36

therefore VPFB-1 reduces to FPFB. We propose an optimal algorithm using dynamic pro-

gramming for VPFB-1, referred as OptVPFB−1. Without loss of generality, we assume

that τ is smaller than the length of any time slot in the AT B list.

To employ a dynamic programming procedure, we need to characterize the structure

of an optimal solution. Let us consider whether the data of size δ can be completely

transferred during the time slot range [p,q] with k path switchings. Let β [p,q,k] be the

maximum available bandwidth during the time slot range [p,q] with k path switchings. The

maximum amount of transferred data during the time slot range [p,q]with k path switchings

is:

β [p,q,k] · (t[q+1]− t[p]− τ · k). (4.2.1)

A path switching can be scheduled either at the end of a time slot or at the beginning of the

next time slot. If the above maximum amount of transferred data is greater than or equal to

the data size δ , we obtain the data transfer end time:

tend = t[p]+δ/β [p,q,k]+ τ · k. (4.2.2)

Obviously, VPFB-1 boils down to the problem of computing β [p,q,k], i.e. how to distribute

k path switchings during the time slot range [p,q] such that the constant available bandwidth

during this time slot range is maximized? One may exhaust all possible path switching

distributions to obtain β [p,q,k], but the number of such distributions is Ck
q−p, which is

exponential.

Following the concept of dynamic programming, we now define the recursive form of

the optimal solutions to subproblems. If we divide the problem of computing β [p,q,k] by

the time slot after which the first path switching is scheduled, β [p,q,k] can be computed

37

from the optimal solutions to its q− p− k+1 subproblems:

β [p,q,k] = max
p≤i≤q−k

{min(β [p, i,0],β [i+1,q,k−1])}, (4.2.3)

where β [p, i,0] is the maximum bandwidth during the time slot range [p, i] without any

path switching, which can be computed by the modified Dijkstra’s algorithm, and β [i+

1,q,k−1] is the maximum bandwidth during the time slot range [i+1,q] with k−1 path

switchings, which is the optimal solution to a subproblem.

Algorithm 7 OptVPFB−1(G,ATB,vs,vd ,δ ,τ)

tend = ∞;

for q = 0 to T −1 do

for k = 0 to q do

for p = 0 to q− k do

if k ≡ 0 then

for all l ∈ E do

bl = min
p≤i≤q

(bl[i]);

end for

β [p,q,0] = bandwidth of the widest path from vs to vd during time slot range

[p,q] based on link bandwidth bl, ∀l ∈ E;

else

β [p,q,k] = max
p≤i≤q−k

{min(β [p, i,0],β [i+1,q,k−1])};

end if

if β [p,q,k] · (t[q+1]− t[p]−τ · k)≥ δ and tend > t[p]+δ/β [p,q,k]+τ · k then

tend = t[p]+δ/β [p,q,k]+ τ · k;

end if

end for

end for

if tend < ∞ then

break;

end if

end for

return tend;

The pseudocode of OptVPFB−1 based on dynamic programming is shown in Algo-

rithm 7. The data transfer end time slot q starts from 0, and for a given q, the algorithm

computes β [p,q,0] as base conditions when k = 0 and recursively computes β [p,q,k] based

38

1

1

1

1

2

2 3

1

2

1

2

3

q

p

k

Figure 4.5: A dynamic programming procedure that computes β [p,q,k] using a tabular,

bottom-up approach.

on Eq. 4.2.3 when k > 0. β [p,q,k] is computed using a tabular, bottom-up approach, as

shown in Fig. 4.5, where the values of β [p,q,k] are stored in a 3-dimensional table, and

the shadowed entries in the table represent the optimal solutions to base conditions when

k = 0. The curved lines indicate which entries in the table are used for computing β [p,q,k].

Two start entries of two curved lines with the same indicators (e.g., ‘1’, ‘2’, ‘3’) ending at

the same end entry are a pair of β [p, i,0] and β [i+ 1,q,k− 1] optimal solutions used to

compute the end entry of the two curved lines. The dynamic programming procedure re-

peatedly increases q by 1 and considers all possible p and k values to compute the amount

of data transfer defined in Eq. 4.2.1 until it is greater than or equal to the data size δ , in

which case the minimal tend is updated. The time for computing the optimal solutions to

39

all base entries of the table (when k = 0) is O(T 2 ·m · lgn), and the time for computing the

other entries of the table (when k > 0) is O(T 4). Therefore, the total time of the algorithm

is O(T 2 · (m · lgn+T 2)) in the worst case.

Note that if τ is not always smaller than the length of any time slot in the AT B list, we

only need to change Eq. 4.2.3 to:

β [p,q,k] = max
p≤i≤q−k

{min(β [p, i,0],β [j,q,k−1]) | j ≤ q}, (4.2.4)

where j is the time slot where the time point t[i]+ τ is located.

4.2.5 Optimal Scheduling Algorithm for VPVB-0

VPVB-0 is to compute a set of paths from vs to vd in different time slots with varying

bandwidths across all time slots to minimize the data transfer end time. Similar to VPFB-

0, the path switching delay is negligible (τ = 0). We propose an optimal algorithm for

VPVB-0 based on an extension of Dijkstra’s algorithm, referred to as OptVPVB−0.

As shown in Algorithm 8, OptVPVB−0 repeatedly calls the extended Dijkstra’s algo-

rithm to compute the bandwidth of the widest path in each time slot and adjusts the residual

data size. The terminating condition of the while loop is met when the residual data size is

less than the amount of data that can be transferred over the widest path in the current time

slot. Assuming that the data are completely transferred in k time slots, the maximum num-

ber of path switchings needed is k−1, in which case the widest paths in any two adjacent

time slots are different. The runtime of the extended Dijkstra’s algorithm is O(m · lgn), and

the runtime of OptVPV B−0 is O(T ·m · lgn) in the worst case.

40

Algorithm 8 OptVPV B−0(G,ATB,vs,vd,δ)

i = 0;

while δ > 0 do

β = bandwidth of the widest path from vs to vd in time slot i;

if δ ≤ β · (t[i+1]− t[i] then

tend = t[i]+δ/β ;

else

i = i+1;

end if

δ = δ −β · (t[i+1]− t[i]);
end while

return tend .

4.2.6 Optimal and Heuristic Scheduling Algorithms for VPVB-1

VPVB-1 considers a constant positive path switching delay τ > 0. When τ is so large

that any path switching causes a negative impact on the performance, VPVB-1 reduces

to FPVB. We first prove that VPVB-1 is NP-complete and non-approximable, and then

propose an optimal algorithm with exponential complexity for small-scale networks and a

heuristic algorithm for large-scale ones.

VPVB-1 is NP-complete

We prove that VPVB-1 is NP-complete by showing that FPVB is a special case of VPVB-1.

Theorem 3. VPVB-1 is NP-complete.

Proof. We restrict VPVB-1 to FPVB by only allowing those instances in which τ ≥

δ/min(bl[i]), where l ∈ E, i ∈ [0,T − 1]. Since the path switching delay is sufficiently

large compared to the length of time slots, performing any path switching would result in

a worse data transfer end time. The validity of NP-completeness proof by restriction is

established in [23], where “restriction” constrains the given, not the question of a problem.

Since FPVB is NP-complete, so is VPVB-1. Proof ends.

41

VPVB-1 is Non-approximable

Theorem 4. For any polynomial-time computable function f (n,m), VPVB-1 cannot be

approximated within an approximation ratio of f (n,m), unless P = NP.

Proof. Assume that there exists an approximate algorithm with an approximation ratio

of f (n,m) for VPVB-1. We show that this assumption implies a polynomial-time optimal

algorithm for FPVB.

Let (G,ATB,vs,vd , tend,δ) be an arbitrary instance of the FPVB decision problem. We

construct an instance (G′,AT B′,v′s,v
′
d,δ

′,τ) of the VPVB-1 optimization problem from the

instance (G,AT B,vs,vd, tend,δ) in polynomial time by setting G′ = G, v′s = vs , v′d = vd ,

δ ′ = δ , τ = tend · f (n,m). The construction of AT B′ is the same as that described in the

proof for Theorem 2.

We apply the approximate algorithm to the VPVB-1 instance (G′,AT B′,v′s,v
′
d,δ

′,τ).

Obviously, the approximate algorithm can find a path without any path switching from v′s

to v′d such that the data of size δ ′ can be completely transferred along the path during the

time interval [0, tend · f (n,m)] if and only if there exists a solution to the FPVB instance,

since the size of data transferred during the time interval [tend, tend · f (n,m)] is 0, and the

path switching delay is sufficiently large such that no path switching is performed in the

VPVB-1 instance. Therefore, a f (n,m) approximation algorithm finds a solution to FPVB

whenever one exists. This conflicts with the NP-completeness of FPVB. Proof ends.

Optimal Scheduling Algorithm for VPVB-1

Similar to the optimal algorithm OptVPFB− 1 to VPFB-1, we propose an optimal al-

gorithm by combining dynamic programming and OptFPV B for VPVB-1, referred to as

OptVPVB−1.

42

A path switching can be performed either at the end of a time slot or at the beginning of

the next time slot. Different time points for path switching may lead to different amounts of

data transfer because the path bandwidths may be different in two adjacent time slots. Let

g1[p,q,k], g2[p,q,k], g3[p,q,k] and g4[p,q,k] be the maximum amount of data transferred

along the optimal FPVB paths with k path switchings in the time interval [t[p] + τ, t[q+

1]−τ], [t[p]+τ, t[q+1]], [t[p], t[q+1]−τ] and [t[p], t[q+1]], respectively. An example of

the data transfer in these four path switching schemes is shown in Fig. 4.6, where each time

slot is of unit length and the bandwidth of the widest path varies across the three time slots.

We compute gi[1,1,0] (1 ≤ i ≤ 4), which is the amount of data transfer in the time slot 1

(dark grey rectangle) in four different time intervals due to the different path switchings

schemes. In Fig. 4.6 (a), the path bandwidth in time slot 1 is less than that in time slot 0

and 2, therefore, both path switchings are performed in time slot 1. The path switchings in

Fig. 4.6 (b) (c) (d) are performed in a similar way.

Consider the case where the data of size δ can be completely transferred during the time

slot range [0,q] with k path switchings. If the amount of data g4[0,q,k] transferred during

the time interval [t[0], t[q+1]] is greater than or equal to the data size δ , we can compute

the corresponding data transfer end time tend , which is in time slot q. Hence, VPVB-1 boils

down to the problem of computing g4[0,q,k], i.e. how to distribute k path switchings during

the time slot range [0,q] such that the amount of data transferred during this time slot range

is maximized?

Dividing the problem of computing gi[p,q,k] by the time slot after which the first path

switching is performed, we compute gi[p,q,k] from the optimal solutions to its q− p−k+1

subproblems:

43

1 30 t

b

3

(b)

(a)

b

(c)

t

2

1

2

switch

switch

1.2 1.8

1

3

2

1

2

switch

switch

0 0.8 2.2 3

b

t1 30

3

2

1

2

switch

switch

1.2 2.2

(d)

2
(1,1,0)g

1
(1,1,0)g

3
(1,1,0)g

4
(1,1,0)g

b

t1

3

2

1

2

switch

switch

0.80 1.8 3

Figure 4.6: The data transfer in different path switching schemes.

44

g1[p,q,k] = max
p≤i≤q−k

{max(g1[p, i,0]+g3[i+1,q,k−1],

g2[p, i,0]+g1[i+1,q,k−1])}

g2[p,q,k] = max
p≤i≤q−k

{max(g2[p, i,0]+g2[i+1,q,k−1],

g1[p, i,0]+g4[i+1,q,k−1])}

g3[p,q,k] = max
p≤i≤q−k

{max(g3[p, i,0]+g3[i+1,q,k−1],

g4[p, i,0]+g1[i+1,q,k−1])}

g4[p,q,k] = max
p≤i≤q−k

{max(g4[p, i,0]+g2[i+1,q,k−1],

g3[p, i,0]+g4[i+1,q,k−1])}

(4.2.5)

In the first recursive equation in Eq. 4.2.5, g1[p, i,0] and g2[p, i,0] denote the amount of

data transferred during the time interval [t[p]+τ, t[i+1]−τ] and [t[p]+τ, t[i+1]] without

any path switchings, respectively, which can be computed by the MPA algorithm designed

for the FPVB problem by changing the output of MPA to the maximal amount of transferred

data instead of the minimal transfer end time. Similarly, g3[i+1,q,k−1] and g1[i+1,q,k−

1] denote the amount of the data transferred during the time interval [t[i+1], t[q+1]− τ]

and [t[i+1]+τ, t[q+1]−τ] with k−1 path switchings, respectively, which are the optimal

solutions to subproblems. The first path switching is performed at the end of time slot i

when g1[p, i,0]+ g3[i+ 1,q,k− 1] is larger than g2[p, i,0]+ g1[i+ 1,q,k− 1]; otherwise,

it is performed at the beginning of time slot i+ 1. The other recursive equations can be

constructed in a similar way.

The pseudocode of OptVPVB − 1 is shown in Algorithm 9. The data transfer end

time slot q starts from 0, and for a given q, the algorithm computes gi[p,q,0] as base

45

Algorithm 9 OptVPV B−1(G,ATB,vs,vd,δ ,τ)

tend = ∞;

for q = 0 to T −1 do

for k = 0 to q do

for p = 0 to q− k do

if k ≡ 0 then

Compute g1[p,q,0], g2[p,q,0], g3[p,q,0], g4[p,q,0], which are the maxi-

mum amount of data transferred along the optimal FPVB paths without any

path switching in the time interval [t[p] + τ, t[q+ 1]− τ], [t[p] + τ, t[q+ 1]],
[t[p], t[q+1]− τ] and [t[p], t[q+1]], respectively;

else

g1[p,q,k] = max
p≤i≤q−k

{max(g1[p, i,0] + g3[i + 1,q,k − 1],g2[p, i,0] + g1[i +

1,q,k−1])};

g2[p,q,k] = max
p≤i≤q−k

{max(g2[p, i,0] + g2[i + 1,q,k − 1],g1[p, i,0] + g4[i +

1,q,k−1])};

g3[p,q,k] = max
p≤i≤q−k

{max(g3[p, i,0] + g3[i + 1,q,k − 1],g4[p, i,0] + g1[i +

1,q,k−1])};

g4[p,q,k] = max
p≤i≤q−k

{max(g4[p, i,0] + g2[i + 1,q,k − 1],g3[p, i,0] + g4[i +

1,q,k−1])};

end if

end for

if g4[0,q,k]≥ δ then

Compute the data transfer end time t ′end for data of size δ using g4[0,q,k] schedul-

ing scheme;

if tend > t ′end then

tend = t ′end

end if

end if

end for

if tend < ∞ then

break;

end if

end for

return tend .

46

conditions when k = 0 and recursively computes gi[p,q,k] based on Eq. 4.2.5 when k > 0.

The algorithm repeatedly increases q by 1 and considers all possible k values to compute the

amount of data transfer defined in Eq. 4.2.5 until g4[0,q,k]≥ δ , in which case the minimal

tend is updated. Since the time complexity of MPA is mq−p+1, the time for computing the

optimal solutions to all base entries of the table (when k = 0) is O(mT). The time for

computing the other entries of the table (when k > 0) is O(T 4). Therefore, the total time

of the algorithm is O(mT +T 4) in the worst case. Note that the algorithm has a high time

complexity with large T , in which case heuristic algorithms are needed for practical use.

Heuristic Scheduling Algorithm for VPVB-1

We propose a heuristic algorithm with polynomial-time complexity for VPVB-1, referred

to as MinVPV B − 1. Similar to OptVPVB − 1 shown in Algorithm 9, MinVPVB − 1

also employs dynamic programming and the same recursions in Eq. 4.2.5 to compute

gi[p,q,k]. For the base conditions (when k = 0), MinVPVB− 1 computes gi[p,q,0] by

using the MinFPV B heuristic instead of the MPA optimal algorithm, by changing the input

of MinFPVB to (G,AT B,vs,vd, p,q) and the output of MinFPVB to the maximal amount

of data transfer during time slot range [p,q]. MinFPVB in Algorithm 5 is to compute a

path from vs to vd to minimize the transfer end time for a given data size, which is essen-

tially the same as computing a path from vs to vd to maximize the transferred data size

within a given time range. Therefore, the total time of the algorithm is polynomial, which

is O(T 2 ·m · (T + lgn)+T 4) in the worst case.

We design a greedy algorithm named GreedyVPV B− 1 for performance comparison.

Again, we define several notations and operations to facilitate our explanation:

47

s(i): the time slot of the most recent path switching considered in time slot i.

P
f

[s(i),i]
: the FPVB path from vs to vd that maximizes the data transfer within time slot range

[s(i), i].

g(Pi, i): the amount of data transferred on path Pi in time slot i.

g(P
f

[s(i−1),i−1], [s(i−1), i−1]): the amount of data transferred on path P
f

[s(i−1),i−1] within

time slot range [s(i−1), i−1].

1ii1i3i 2i4i

switch switch or not?Switching

Points

Time Slots

Paths [3, 1]

f

i i
P w

iP

[3,]

f

i iP

Figure 4.7: Illustration of the GreedyV PVB−1 algorithm.

GreedyV PVB − 1 also calls the MinFPVB heuristic to compute the amount of data

transferred along the FPVB path during a given time range. Due to the varying available

bandwidths in the future time slots, path switchings allow data to be transferred along the

widest path in each time slot to improve the utilization of bandwidths. On the other hand,

path switchings incur additional time overhead. We must take both the positive and nega-

tive effects of path switchings into consideration, and make a decision on whether a path

switching between two adjacent time slots is worthwhile. The pseudocode of the algorithm

is shown in Algorithm 10. We assume that the data can not be completely transferred in

the first time slot. When moving to time slot i, the algorithm makes a decision on whether

48

to switch to the widest path in time slot i or stick to the FPVB path computed for time slots

from s(i−1) to i. An example of GreedyV PVB−1 is shown in Fig. 4.7, where the most

recent path switching occurs in time slot i−3. When a path switching is performed at the

beginning of time slot i, the transferred data size on path P
f

[i−3,i−1]
within the time slot range

[i− 3, i− 1] and the transferred data size on path Pw
i within time interval [t[i] + τ, t[i+ 1]]

are g(P f

[i−3,i−1]
, [i−3, i−1]) and

t[i+1]−t[i]−τ
t[i+1]−t[i]

· g(Pw
i , i), respectively. When no path switch-

ing is performed at the beginning of time slot i, we compute the FPVB path P
f

[i−3,i]
from

time slots i− 3 to i, in which the transferred data size within the time slot range [i− 3, i]

is g(P
f

[i−3,i], [i− 3, i]). If the path switching yields a larger data transfer, s(i) is updated to

i, which means that the most recent path switching occurs at the time slot i. Meanwhile,

the data size δ is updated by subtracting the size of data transferred between time slots

s(i−1) and i−1. tend is computed when
t[i+1]−t[i]−τ

t[i+1]−t[i] ·g(Pw
i , i) is greater than or equal to the

remaining data size. During the time interval [t[i], t[i]+ τ], the network is performing path

switching and there is no data transfer during this time, so t[i] is updated to t[i] + τ . On

the other hand, if the FPVB path in time slot [s(i−1), i] provides a better solution, we set

s(i) to be s(i−1), and compute tend when g(P
f

[s(i),i]
, [s(i), i]) is greater than or equal to the

remaining data size. In Algorithm 10, we assume that τ is smaller than the length of any

time slot in the AT B list. In the case where τ is larger than the length of the current time slot

i, no path switching is performed at time slot i as g(P
f

[s(i),i]
, [s(i), i]) yields a larger amount

of data transfer. The total computational complexity of the GreedyVPV B−1 algorithm is

O(T ·m · (T + lgn)).

49

Algorithm 10 GreedyV PVB−1(G,ATB,τ,vs,vd,δ)

Compute the widest path in time slot 0 as Pw
0 ;

s(0) = 0, P
f

[s(0),0] = Pw
0 ;

for i = 1 to T −1 do

Compute the widest path in the time slot i as Pw
i ;

Compute the FPVB path during time slot range [s[i − 1], i] as P
f

[s[i−1],i]
by using

MinFPVB algorithm;

if g(P
f

[s(i−1),i−1]
, [s(i−1), i−1])+ t[i+1]−t[i]−τ

t[i+1]−t[i] ·g(Pw
i , i)> g(P

f

[s(i−1),i]
, [s(i−1), i]) then

s(i) = i;

δ = δ −g(P
f

[s(i−1),i−1]
, [s(i−1), i−1]);

if
t[i+1]−t[i]−τ

t[i+1]−t[i] ·g(Pw
i , i)≥ δ then

tend = t[i]+ τ + δ
g(Pw

i ,i) · (t[i+1]− t[i]);

break;

end if

t[i] = t[i]+ τ;

else

s(i) = s(i−1);

if g(P
f

[s(i),i]
, [s(i), i])≥ δ then

tend = t[i]+
δ−g(P

f

[s(i),i],[s(i),i−1])

g(P
f

[s(i),i]
,i)

· (t[i+1]− t[i]);

break;

end if

end if

end for

return tend .

4.3 Performance Evaluation

This section presents simulation-based performance comparisons between the heuristics

designed for both FPVB and VPVB-1, which are NP-complete. The proposed heuristics

are compared with optimal algorithms and greedy ones in small- and large-scale networks.

4.3.1 Simulation Setup

In the simulation, we first generate a set of networks of random topology with a different

number of nodes and links under the following assumptions on the link TB lists: (a) the

50

initial bandwidth of each link is 10 Gbps; (b) the number of user requests within a certain

time period follows a Poisson distribution; (c) the specified bandwidth and duration follow

a normal distribution: (d) the available bandwidth on a link varies over time after the ini-

tial user reservation. For each simulated network, in each time period of one minute, we

generate a number of user requests according to the Poisson distribution, each of which

requests a path from a source node vs to a destination node vd with specified bandwidth b

in a specified time slot [ts, te]. For each request, the source node vs and the destination node

vd are randomly selected, and the start time ts is also randomly selected within the current

one-minute time period. Both the specified bandwidth b and duration d = te − ts follow a

normal distribution as follows:

b = bmax · e
− 1

2 (3x)2

,

d = dmax · e
− 1

2 (3x)2

,

(4.3.1)

where bmax is set to 3 Gbps, dmax is set to one minute in large-scale networks and 10 seconds

in small-scale networks, and x is a random variable within the range of [0,1]. The generated

user requests are injected one by one into a simulated network and the corresponding band-

widths are reserved if there exists a feasible path for the request. In this simulation setting,

the reservation load is determined by the number of user requests within a time period of

one minute and the adjacent links present a certain degree of link load correlation.

4.3.2 Comparison of Algorithms for FPVB

We compare the heuristic algorithm MinFPVB with GreedyFPVB and the optimal algo-

rithm OptFPV B for FPVB using various simulated networks, reservation loads and data

sizes. Since the computational complexity of OptFPV B is exponential, the performance of

MinFPVB is compared with that of OptFPV B in 200 small-scale networks with 8 nodes

51

and 12 links and the give data size is set to 3 GBytes. MinFPVB achieves the optimal

result when the available bandwidth of each link is constant. Therefore, we set maximum

duration of a request to a smaller value (dmax = 10 seconds) to make the link bandwidth

varying over time, and evaluate the performance of MinFPVB in the harsh cases. For each

simulated network with random topology, we run MinFPVB and OptFPVB algorithms

under different reservation loads ranging from 200 to 400 at an interval of 20, and measure

the data transfer end time of two resultant scheduling schemes. The percentage of networks

in which MinFPVB achieves the same data transfer end time as that of OptFPVB under

each reservation load is plotted in Fig. 4.8. Since a higher reservation load induces a larger

data transfer end time, MinFPV B has a lower probability to achieve the optimality under

the higher reservation loads. The figure shows that MinFPVB achieves the optimal perfor-

mance in more than 95% cases, which indicates that MinFPVB approaches the optimality

with a high probability in small-scale networks.

We then compare MinFPVB with GreedyFPVB in 50 large-scale networks with 50

nodes and 200 links for different reservation loads and data sizes. For each simulated net-

work with random topology, we first run these two algorithms under different reservation

loads ranging from 1000 to 2000 at an interval of 100, with data size equal to 50 GBytes;

then run these two algorithms with data size ranging from 30 to 80 GBytes at an interval of

5 GBytes, under the reservation load of 1500. We plot the means and standard deviations

of the data transfer end time measurements among the 50 network instances for each reser-

vation load and given data size in Fig. 4.9 and Fig. 4.10, respectively. The performance

superiority of MinFPVB becomes more obvious when the reservation load increases, and

MinFPVB is able to achieve about 2 times speedup of transfer over GreedyFPV B.

52

200 250 300 350 400
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Reservation load

P
e

rc
e

n
ta

g
e

 t
h

a
t

M
in

F
P

V
B

 a
c
h

ie
v
e

s
 o

p
ti
m

a
lit

y

Figure 4.8: The percentage of networks in which MinFPVB achieves the optimality in a

series of 200 simulated networks of 8 nodes and 12 links under varying reservation loads.

1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

Reservation load

A
v
e

ra
g

e
 t

ra
n

s
fe

r
e

n
d

 t
im

e
 (

s
e

c
o

n
d

s
)

MinFPVB

GreedyFPVB

Figure 4.9: Comparison of data transfer end time (mean and standard deviation) between

MinFPVB and GreedyFPV B in 50 simulated networks of 50 nodes and 200 links under

varying reservation loads.

53

30 40 50 60 70 80
0

200

400

600

800

1000

1200

1400

Data size (GBytes)

A
v
e

ra
g

e
 t

ra
n

s
fe

r
e

n
d

 t
im

e
 (

s
e

c
o

n
d

s
)

MinFPVB

GreedyFPVB

Figure 4.10: Comparison of data transfer end time (mean and standard deviation) between

MinFPVB and GreedyFPVB in 50 simulated networks of 50 nodes and 200 links with

varying data sizes.

4.3.3 Comparison of Algorithms for VPVB-1

We compare heuristic algorithms MinVPVB−1, GreedyV PVB−1 and the optimal algo-

rithm OptVPV B−1 for VPVB-1 using various simulated networks, reservation loads and

data sizes with the same settings as described in the previous subsection. Since the com-

putational complexity of OptVPV B− 1 is exponential, we first compare the performance

of MinVPVB−1 with that of OptVPVB−1 in small-scale networks under varying reser-

vation loads and the path switching delay is set to 0.5 second. The percentage of networks

in which MinVPVB−1 achieves the same data transfer end time as that of OptVPV B−1

under each reservation load is plotted in Fig. 4.11. We observe that MinVPVB−1 almost

achieves the optimal performance. VPVB-1 allows path switching and the number of time

slots between tow adjacent path switchings is relatively smaller than the total transfer end

54

time as MinV PVB−1 applies MinFPV B to compute the maximum amount of data trans-

ferred during the time slots among two path switchings. Since MinFPV B has a higher

probability to achieve the optimality in a smaller number of time slots, MinVPV B−1 has

a higher probability to achieve the optimality in the same network settings. The measure-

ments show that MinVPVB− 1 has a probability of more than 98% to achieve the global

optimality in a statistical sense in small-scale networks.

200 250 300 350 400
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Reservation load

P
e

rc
e

n
ta

g
e

 t
h

a
t

M
in

V
P

V
B

−
1

 a
c
h

ie
v
e

s
 o

p
ti
m

a
lit

y

Figure 4.11: The percentage of networks in which MinVPVB−1 achieves the optimality

in a series of 200 simulated networks of 8 nodes and 12 links under varying reservation

loads.

We then compare MinVPVB−1 with GreedyV PVB−1 in 50 large-scale networks for

different reservation loads and data sizes, and the path switching delay is set to 0.5 second.

We plot the means and standard deviations of the data transfer end time measurements

among 50 network instances for each reservation load and given data size in Fig. 4.12

and Fig. 4.13, respectively. We observe that the average data transfer end time obtained

by either MinVPVB− 1 or GreedyV PVB− 1 almost linearly increases as the reservation

55

load or data size increases, and MinVPV B−1 always outperforms GreedyV PVB−1. The

comparison between Fig. 4.12 and Fig. 4.9 and the comparison between Fig. 4.13 and

Fig. 4.10 show that VPVB has a better performance than FPVB since the flexibility for

path switching improves the utilization of bandwidth resources.

1000 1200 1400 1600 1800 2000
60

70

80

90

100

110

120

130

140

150

Reservation load

A
v
e

ra
g

e
 t

ra
n

s
fe

r
e

n
d

 t
im

e
 (

s
e

c
o

n
d

s
)

MinVPVB−1

GreedyVPVB−1

Figure 4.12: Comparison of data transfer end time (mean and standard deviation) between

MinVPVB−1 and GreedyV PVB−1 in 50 simulated networks of 50 nodes and 200 links

under varying reservation loads.

We also compare MinVPV B−1 with GreedyVPV B−1 in 50 large-scale networks for

different path switching delays ranging from 0.1 to 1 second at an interval of 0.1 second,

and study the effect of the path switching delay on the data transfer end time. The reserva-

tion load is set to 1500 and the data size is set to 50 GBytes. We plot the mean and standard

deviation of the data transfer end time measurements among the 50 network instances for

each path switching delay in Fig. 4.14. We observe that MinV PVB−1 consistently outper-

forms GreedyV PVB−1 with different path switching delays and the average data transfer

end time linearly increases as the path switching delay increases. When the path switching

56

30 40 50 60 70 80
60

80

100

120

140

160

180

200

220

240

Data size (GBytes)

A
v
e

ra
g

e
 t

ra
n

s
fe

r
e

n
d

 t
im

e
 (

s
e

c
o

n
d

s
)

MinVPVB−1

GreedyVPVB−1

Figure 4.13: Comparison of data transfer end time (mean and standard deviation) between

MinVPVB−1 and GreedyV PVB−1 in 50 simulated networks of 50 nodes and 200 links

with varying data sizes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
80

100

120

140

160

180

200

220

240

260

280

Path switching delay (seconds)

A
v
e

ra
g

e
 t

ra
n

s
fe

r
e

n
d

 t
im

e
 (

s
e

c
o

n
d

s
)

MinVPVB−1

GreedyVPVB−1

Figure 4.14: Comparison of data transfer end time (mean and standard deviation) between

MinVPVB−1 and GreedyV PVB−1 in 50 simulated networks of 50 nodes and 200 links

with varying path switching delays.

57

delay is set to 1 second, i.e. the length of each time slot, no path switching is performed in

GreedyV PVB−1, which leads to an unsatisfactory performance. MinVPVB−1 employs

dynamic algorithm to compute the appropriate time points for path switching although the

path switching lasts for an entire time slot, and achieves a better transfer performance in

comparison with GreedyVPV B−1.

58

Chapter 5

Bandwidth Scheduling in LCC-overlays

5.1 LCC Model and Problem Formulation

In an overlay network built on top of another network, overlay links are virtual links that

correspond to underlying paths in the lower-layer network. Overlay links are correlated

if the underlying paths they are mapped to share one or more lower-layer link segments.

In this section, we first introduce the LCC model proposed in [49], where the two-layer

hierarchy of an overlay network is modeled as:

• A lower-layer (e.g. IP) graph Ĝ = (V̂ , Ê); each low-layer link l̂ ∈ Ê has a bandwidth

of c
l̂
.

• A higher-layer (i.e. overlay) graph G = (V,E), where V ⊂ V̂ ;

• A mapping of each overlay link (v1,v2) ∈ E to a low-layer path P(v1,v2) ⊂ Ĝ from

v1 to v2.

Let n and m represent the number of nodes and the number of links in overlay graph G,

respectively. The LCC-overlay network is defined as follows.

Definition 1. The LCC-overlay network is a triplet (G,M,b) where

• the bandwidth of each link l ∈ E is a non-negative variable xl .

59

• (M,b) represent a set of z linear capacity constraints Mx ≤ b:

– M is a 0-1 coefficient matrix of size z×m;

– x is an m×1 vector of link bandwidth variables;

– b ∈ Rz is the bandwidth vector.

B

A

r1 r2 r5

D

C

r6

3

3

3

35

5

5

5

5

r4

r3

3 3

3 3

A

B

C

D

3 3

3

3

5 5

(a) IP graph (b) Overlay graph

Figure 5.1: An example of the LCC-overlay network of a two-layer hierarchy.

The maximum value of variable xl for overlay link l is equal to the bandwidth of the

corresponding path in the lower-layer network. Each row i in (M,b) is a constraint in the

form of ∑l:C[i][l]=1 xl ≤ b[i]. The number of elements with the value of ‘1’ in each row of

M is at least one. For illustration purposes, a numerical example is provided to explain the

above two-layer overlay network model, as shown in Fig. 5.1, which consists of four over-

lay nodes and 6 routers, and the number on a link represents the link bandwidth. Fig. 5.1 (a)

is the physical (lower-layer) network graph, and Fig. 5.1 (b) is the overlay network built on

top of it. In this example, two overlay links (A,D) and (B,C) are correlated, and hence the

sum of their bandwidths is constrained by the capacity of the shared physical link (r2,r5),

i.e. x(A,D)+ x(B,C) ≤ 5. The rest links in Fig. 5.1 (b) are independent of each other. The

LCC for the overlay graph is given below in the form of Mx ≤ b:

60





















1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1













































x(A,B)

x(A,C)

x(A,D)

x(B,C)

x(B,D)

x(C,D)

























≤





















3

3

5

3

3





















. (5.1.1)

From the constraint x(A,D)+ x(B,C) ≤ 5, we have x(A,D) ≤ 5 and x(B,C) ≤ 5. If the band-

width of the physical link (r2,r5) is 6 instead of 5 in Fig. 5.1 (a), besides the constraint of

x(A,D)+ x(B,C) ≤ 6, we need to add another two constraints, x(A,D) ≤ 5 and x(B,C) ≤ 5, into

Eq. 5.1.1.

In an LCC-overlay network that supports advance bandwidth reservation, the available

bandwidth on each overlay link is not a single value. Instead, each link l ∈ E maintains

a list of residual bandwidths specified as segmented constant functions of time. Since the

residual link bandwidth varies over different time slots, bandwidth vector b is different

in the LCC for each time slot. When a user makes a bandwidth reservation on link l ∈ E,

considering the LCC in G, not only the time-bandwidth list for link l is updated, but also the

time-bandwidth lists for other links that are correlated to link l are updated. Based on the

bandwidth reservation on the overlay links and the topology of the lower-layer network, a

bandwidth vector b is computed to represent the linear link capacity constraints in each time

slot. The coefficient matrix M is fixed across different time slots as the link correlations do

not change. Then a bandwidth matrix B of size z×T is constructed, where the i-th column

of B is the bandwidth vector of LCC in the i-th time slot. An LCC-overlay network that

supports advance bandwidth reservation can be represented by a triplet of (G,M,B).

61

Based on different data transport constraints and application requirements, we formu-

late two advance bandwidth scheduling problems with the same objective to minimize the

data transfer end time as follows: Given an LCC-overlay network (G,M,B) that supports

advance bandwidth reservation, source vs and destination vd , data size δ ,

• Fixed-Bandwidth Path (FBP): compute a path from vs to vd with a fixed bandwidth;

• Varying-Bandwidth Path (VBP): compute a path from vs to vd with varying band-

widths across multiple time slots.

5.2 Complexity Analysis

FBP and VBP problems are corresponding to FPFB and FPVB problems presented in the

previous chapter, respectively, where FBP is optimally solved in polynomial time and VBP

is proved to be NP-complete. Obviously, VBP is still NP-complete in LCC-overlay net-

works, since a network without LCC is a special case of networks with LCC. FBP com-

putes a path to minimize the data transfer end time for a given data size, which is equivalent

to the widest-path problem. Since the widest-path problem with liner capacity constraints

(WPC) is proved to be NP-complete in [49], so is FBP.

We first prove the lower bound of the approximation ratio for WPC, and then prove all

of these bandwidth scheduling problems are non-approximable in LCC-overlay networks.

The decision version of WPC is defined as follows: Given an LCC-overlay network graph

(G,M,b), source vs and destination vd , a positive value β ≤ max{b[i]}, does there exist a

path from vs to vd such that the path bandwidth is no less than β? Since the link bandwidth

in WPC is a single value that does not change over time, b is a vector.

62

5.2.1 WPC is Approximable

This subsection proves that there does not exist an approximate algorithm with an approx-

imation ratio less than or equal to (γ − 1)/λ for WPC, where γ denotes the maximum

number of elements with the value of 1 in a row of coefficient matrix M, which is equal

to the maximum number of overlay links that are correlated, and λ denotes the number of

links from an LCC that are bottleneck links in the optimal path. An approximate algorithm

with an approximation ratio of γ/λ for this problem is proposed in Section 7.2. To prove

the lower bound of the approximation ratio for WPC, we first define the Path with Forbid-

den Tuples (PFT) problem: Given a directed graph G = (V,E), source vs and destination

vd , a collection F = {(v1
1, ...,v

1
k), ...,(v

p
1, ...,v

p
k)} of k-tuples (k ≥ 2) of nodes from V , does

there exist a direct path from vs to vd that contains at most k−1 nodes from each k-tuple in

F?

Theorem 5. PFT is NP-complete.

Proof. Given a solution (a path from vs to vd) to PFT, one can verify in polynomial time

the validity of the solution by checking whether or not the path contains at most k−1 nodes

from each k-tuple in F . Hence, PFT ∈ NP.

Now we reduce the Path with Forbidden Pairs (PFP) problem in [23] to PFT. PFP is

defined as follows: Given a directed graph G = (V,E), source vs and destination vd , a col-

lection F = {(v1
1,v

1
2), ...,(v

p
1,v

p
2)} of pairs of nodes from V (all the pairs in F are disjoint),

does there exist a path from vs to vd that contains at most one node from each pair in F?

Let (G,vs,vd,F) be an arbitrary instance of PFP. An instance (G′,v′s,v
′
d,F

′,k′) of PFT

is constructed from the PFP instance in polynomial time such that G′ has a direct path from

63

v′s to v′d that contains at most k′−1 nodes from each k′-tuple in F ′, if and only if G has a

direct path from vs to vd that contains at most one node from each pair in F . k′ is set to be

an integer that is greater than 2. Any node that is in V but not in any pair of F is added to

V ′. Any link l ∈ E that is not incident to any node in F is added to E ′. For each pair (v1,v2)

in F , v2 is replaced with k′−1 nodes v′1, ...,v
′
k′−1 and k′−2 directed links (v′1,v

′
2), (v

′
2,v

′
3),

..., (v′
k′−2

,v′
k′−1

), which are referred to as v2’s replacement links. For each directed link

l = (u,v2) ∈ E that ends at v2, a directed link l′ = (u,v′1) is added to E ′; similarly, for each

directed link l = (v2,u) ∈ E that starts from v2, a directed link l′ = (v′k′−1,u) is added to E ′.

Let v′s = vs when there does not exist a pair (u,vs), u ∈ V in F; otherwise, vs is replaced

with k′−1 nodes in V ′. v′s is set to be the first node of these k′−1 nodes, and v′d is set in a

similar way. F ′ is a simple copy of F by replacing each pair with a corresponding k′-tuple.

Suppose that G has a direct path P from vs to vd that contains at most one node from

each pair in F . A corresponding path P′ can be found in G′ by simply substituting each P’s

constituent node that appears in the latter position of a pair in F by its k′−2 replacement

links in G′. Clearly, P′ contains at most k′− 1 nodes from each k′-tuple in F ′. Hence, P′

composes a solution to PFT.

Conversely, let P′ be a direct path in G′ from v′s to v′d that contains at most k′−1 nodes

from each k′-tuple in F ′. P′ is collapsed to a path P in G by shrinking the replacement

links into their corresponding nodes. Obviously, P is the solution to PFP. This concludes

the proof.

Theorem 6. For a given WPC problem, let γ be the maximum number of overlay links that

are correlated and λ be the number of links from an LCC that are bottleneck links in the

optimal path. WPC cannot be approximated within an approximation ratio of (γ − 1)/λ ,

unless P = NP.

64

Proof. Assume that there exists an approximate algorithm with an approximation ratio

of (γ − 1)/λ for WPC. This assumption is shown to imply a polynomial-time optimal

algorithm for the PFT problem.

Let (G,vs,vd,F,k) be an arbitrary instance of PFT. An instance (G′,M′,b′,v′s,v
′
d) of

WPC optimization problem is constructed from the PFT instance in polynomial time. The

WPC optimization problem computes a path from v′s to v′d to maximize the path bandwidth.

Any node that is in V but not in any k-tuple of F is added to V ′, and any link l ∈ E that is

not incident to any node in F is added to E ′. Each node v in F is replaced with two nodes

v′1,v
′
2 and a directed link from v′1 to v′2, which is referred to as v’s replacement link. For

each directed link l = (u,v) ∈ E that ends at v, a directed link l′ = (u,v′1) is added to E ′;

similarly, for each directed link l = (v,u) ∈ E that starts from v, a directed link l′ = (v′2,u)

is added to E ′. Let v′s = vs when vs does not appear in F; otherwise, vs is replaced with

two nodes in V ′. Let v′s to be the first node of these two nodes, and set v′d in a similar way.

Then the linear capacity constraints are constructed. Each link l ∈ E ′ except those with

replaced nodes in F translates to a one-variable constraint xl ≤ 1. For each k-tuple of nodes

(v1, ...,vk) in F with k replacement links l1, ..., lk in G′, respectively, a k-variable constraint

xl1 + ...+ xlk ≤ 1 is constructed.

In the WPC instance (G′,M′,b′,v′s,v
′
d), since the maximum number of links that are cor-

related is k, γ = k. The approximate algorithm with an approximation ratio of (γ −1)/λ =

(k− 1)/λ is applied to the WPC instance. Since the approximation ratio (k− 1)/λ must

be greater than or equal to 1, the approximation ratio of the approximate algorithm is 1

instead of (k−1)/k when λ = k. Obviously, the approximation algorithm can find a direct

65

path from v′s to v′d with path bandwidth at least 1/(k− 1) if and only if there exists a di-

rect path from vs to vd that contains at most k− 1 nodes from each k-tuple in F , because

the bandwidth of a replacement link is at least 1/(k− 1) if and only if at most k − 1 re-

placement links from a k-variable constraint are used. Therefore, a (γ −1)/λ approximate

algorithm to WPC finds a solution to PFT whenever one exists. This conflicts with the

NP-completeness of PFT. Proof ends.

5.2.2 FBP and VBP are Non-approximable

FBP and VBP are not only NP-complete, but also non-approximable.

Theorem 7. For any polynomial-time computable function f (n,m), FBP and VBP cannot

be approximated within an approximation ratio of f (n,m), unless P = NP.

Proof. Firstly, we prove FBP to be non-approximable. Assume that there exists an

approximate algorithm with an approximation ratio of f (n,m) for FBP. We will show that

this assumption implies a polynomial-time optimal algorithm for WPC.

Let (G,M,b,vs,vd,β) be an arbitrary instance of the decision version of WPC. An

instance (G′,M′,B′,v′s,v
′
d,δ

′) of FBP optimization problem is constructed from the WPC

instance in polynomial time. Let G′ = G, M′ = M, v′s = vs, v′d = vd , and δ ′ = β . The

aggregated time-bandwidth list AT B′ is constructed for all links l′ ∈ G′, which consists of

3 time slots as shown in Fig. 5.2. The available bandwidth of all links l′ ∈ G′ in the first

time slot (i.e. time interval [0,1]) and the third time slot (i.e. time interval [f (n,m),+∞]) is

the same as the available bandwidth of all links l ∈ G, while the available bandwidth of all

links l′ ∈ G is 0 in the second time slot (i.e. time interval [1, f (n,m)]). Correspondingly, B′

is a matrix of three columns: the first and third column of B′ are the copies of bandwidth

vector b, and all elements in the second column of B′ have the value of 0.

66

10 t

b

(,)f n m

m links m links

Figure 5.2: Construction of AT B′ in an FBP instance.

The approximate algorithm is applied to the FBP instance (G′,M′,B′,v′s,v
′
d ,δ

′). Appar-

ently, the approximate algorithm can find a path from v′s to v′d with fixed bandwidth such

that the data of size δ ′ can be completely transferred along the path during time interval

[0, f (n,m)] if and only if there exists a path from vs to vd in G such that the path bandwidth

is no less than β , since the size of data transferred during time interval [1, f (n,m)] is 0 for

the FBP instance. Therefore, an f (n,m) approximate algorithm to FBP finds a solution to

WPC whenever one exists. This conflicts with the NP-completeness of WPC.

Similarly, VBP can be proved to be non-approximable by constructing its problem in-

stance from the 0-1 TB problem instance [27]. Proof ends.

FBP and VBP are non-approximable with respect of the function of network size f (n,m).

If the time slots in the aggregated time-bandwidth list is taken into consideration, FBP and

VBP are approximable.

67

5.3 Algorithm Design

The non-approximability of these scheduling problems in LCC-overlay networks indicates

that there does not exist any polynomial-time optimal algorithms or approximate algorithms

for these problems unless P = NP. Therefore, we propose a heuristic algorithm for each of

these problems.

5.3.1 Heuristic Algorithm for FBP

Algorithm 11 MinFBP(G,M,B,vs,vd,δ)

1: tmin
end = ∞;

2: for q = 0 to T −1 do

3: for p = 0 to q do

4: for all i = 1 to z do

5: b[i] = min
p≤ j≤q

(B[i, j]);

6: end for

7: β = MaxBW (G,M,b,vs,vd);
8: if β · (t[q+1]− t[p])≥ δ , and tmin

end > t[p]+δ/β then

9: tmin
end = t[p]+δ/β ;

10: end if

11: end for

12: if tmin
end < ∞ then

13: break;

14: end if

15: end for

16: return tmin
end .

FBP takes as input an LCC-overlay network (G,M,B), source vs and destination vd ,

and data size δ , and computes a path with a fixed bandwidth to minimize the data transfer

end time. Note that the data transfer start time and path bandwidth are not specified by the

user. A heuristic algorithm referred to as MinFBP is proposed for FBP, whose pseudocode

is provided in Algorithm 11. The output of the algorithm is the minimal data transfer

end time tmin
end . Since it may not be always optimal to start data transfer immediately, the

68

algorithm varies the transfer start time slot p from 0 to q for a given data transfer end time

slot q, and checks whether there exists any feasible time slot p such that the data of size δ

can be transferred during the time slot range [p,q] (i.e. time interval [t[p], t[q+1]]). If there

does not exist any feasible path, the algorithm repeatedly increases q by 1; otherwise, the

algorithm computes the best start time slot p and the corresponding minimal data transfer

end time tmin
end by considering all possible p values and terminates. In line 7, the bandwidth

β of the widest path is calculated by MaxBW algorithm, which is the solution to the WPC

optimization problem.

To facilitate the explanation of MaxBW , the following notations are defined:

∑M,∑M[j,∗]: compute the sum of all the elements in M and the sum of the elements in

the j-th row of M, respectively.

c[j]: the maximum number of links from the j-th LCC that are used for the widest path

computation.

b(vs,v): the bandwidth of the computed path from vs to v, which is the bottleneck bandwidth

of all component links on the path.

Q: a queue of nodes sorted by their bandwidth b(vs,v) in an decreasing order.

MaxBW takes as input an LCC-overlay network (G,M,b), source vs and destination vd ,

and computes the bandwidth of the widest path from vs to vd . The pseudocode of MaxBW

is shown in Algorithm 12. In a network without LCC, the widest path can be computed by

a modified Dijkstra’s algorithm since the link bandwidth is determined before path compu-

tation. However, in an LCC-overlay network, the bandwidth of the links within each LCC

69

Algorithm 12 MaxBW (G,M,b,vs,vd)

1: βmax = 0;

2: for i = 1 to ∑M− z do

3: if i ≡ 1 then

4: c[j] = 1, ∀ j ∈ [1,z];
5: else

6: k = argmax
j∈[1,z],c[j]<∑M[j,∗]

{
b[j]

c[j]+1
};

7: c[k] = c[k]+1;

8: end if

9: for all l ∈ E do

10: bl = min
j∈[1,z],M[j,l]≡1

(b[j]/c[j]);

11: end for

12: for all v ∈V,v 6= vs do

13: b(vs,v) = 0;

14: end for

15: b(vs,vs) = ∞;

16: Q =V ;

17: while Q 6= /0 do

18: u = dequeue(Q);
19: if u ≡ vd then

20: break;

21: end if

22: for all v ∈ Q,(u,v) ∈ E and the computed path from vs to u uses at most c[j]−1

links from the j-th LCC that contains (u,v), ∀ j ∈ [1,z] do

23: if b(vs,v) < min(b(vs,u),b(u,v)) then

24: b(vs,v) = min(b(vs,u),b(u,v));
25: end if

26: end for

27: end while

28: if βmax < b(vs,vd) then

29: βmax = b(vs,vd);

30: end if

31: end for

32: return βmax.

70

is not determined until the actual number of links from each LCC that are used to consti-

tute the widest path is known. Lines 3-8 in Algorithm 12 restrict the maximum number

of links from each LCC that are used for the widest path computation, and incrementally

relax the restriction in each for loop (line 2), which is also shown in Table 5.1. This table

contains z rows, where z is the total number of LCCs in the given network, and ∑M − z

columns (excluding the first column). In the base case (the second column of Table 5.1),

c[i], i∈ [1,z] is initialized to be 1, which means that at most one link from each LCC is used

for the widest path computation. In each successive column, one of the LCCs is chosen to

relax the restriction on the number of links based on line 6 in Algorithm 12, while the re-

strictions on the number of links for other LCCs remain the same. The k-th LCC is chosen

such that b[k]/(c[k]+1) is maximized, e.g., b[k]/(c[k]+1) is no less than b[j]/(c[j]+1),

j ∈ [1,z], to increase c[k] by 1 and balance the link bandwidth in the network. Then the

link bandwidth is computed based on c[j] and the given bandwidth vector b in lines 9-11.

A link may appear in multiple LCCs, and the link bandwidth is determined by the minimal

b[j]/c[j]. Note that fair sharing of the bandwidth among the links within one LCC is used.

Table 5.1: Increment in the number of links from each LCC.

c[1] 1 1 1 . . . ∑M[1,∗] ∑M[1,∗]

c[2] 1 2 2 . . . ∑M[2,∗] ∑M[2,∗]
...

...
...

...
...

...
...

c[j] 1 1 2 . . . ∑M[j,∗] ∑M[j,∗]
...

...
...

...
...

...
...

c[z] 1 1 1 . . . ∑M[z,∗]−1 ∑M[z,∗]

Once the bandwidths of all links are determined, the widest path is computed by using

a modified Dijkstra’s algorithm in lines 12-30. During the bandwidth relaxation of the

71

current node u to one of its neighbor nodes v, line 22 guarantees that the computed path

from vs to v satisfies c[j] restriction. Each node maintains a vector of z size to store the

number of links from each LCC that are already used in the computed path from vs to

itself. If the computed path from vs to u already consists of c[j] links from the j-th LCC

and the link (u,v) is also in the j-th LCC, then u does not relax its bandwidth to v. There

are total ∑M− z loops in the algorithm, and the algorithm updates the maximum available

bandwidth βmax at the end of each loop.

Theorem 8. For a given WPC problem, let γ be the maximum number of overlay links that

are correlated and λ be the number of links from an LCC that are bottleneck links in the

optimal path. The approximation ratio of MaxBW algorithm to WPC is γ/λ .

Proof. The case of the last column of Table 5.1 is considered, where c[j] is set to be

∑M[j,∗] and all the links from each LCC can be used for widest path computation. γ ≥

∑M[j,∗], and the bandwidths of all links in the j-th LCC are at least b[j]/γ,∀ j ∈ [1,z].

If the bottleneck links in the optimal path are from the k-th LCC, the bandwidth of the

optimal path is b[k]/λ . The LCCs that contain the links constituting the optimal path are

denoted as optimal LCCs. MaxBW can find a path with bandwidth of at least b[k]/γ by

using only the links from the optimal LCCs. Therefore, the approximation ratio of MaxBW

is
b[k]/λ
b[k]/γ

= γ/λ . Proof ends.

The time complexity of MaxBW is O((∑M − z) · (n2 + z ·m)), or O(z ·m · (n2+ z ·m))

in the worst case, and the time complexity of MinFBP is O(T 2 · z ·m · (n2+ z ·m)+T 3 · z).

5.3.2 Heuristic Algorithm for VBP

With the same input of FBP, VBP computes a path with variable bandwidth during file

transfer to better utilize network resources. We propose a heuristic algorithm for VBP,

72

referred to as MinVBP. Again, several notations or functions are defined to facilitate our

explanation:

Ψ(B[j,]
c[j]+1

,δ): a function that computes the transfer end time of data of size δ using
B[j,]

c[j]+1

time-bandwidth list, where B[j,] denotes the j-th row of bandwidth matrix B.

tend[v]: the transfer end time for data of size δ from vs to v along the computed path.

Q: a queue of nodes sorted by their data transfer end time tend[v] in an increasing order.

b(vs,v)[j]: the bandwidth of the computed path from vs to v in the j-th time slot.

The pseudocode of MinVBP algorithm is shown in Algorithm 13. Similar to MaxBW ,

lines 3-8 in Algorithm 13 restrict the maximum number of links from each LCC that are

used for widest path computation. In each for loop, line 6 chooses one LCC to relax such

that the data transfer end time along the shared physical link is minimized. The link band-

width is computed at different time slots based on c[j] and the given bandwidth matrix B

in lines 9-11. Then the data transfer end time tend[vd] is computed by using a modified

Dijkstra’s algorithm in lines 12-31. Similarly, line 23 guarantees that the computed path

from vs to v satisfies c[j] restriction. Note that the available bandwidth of the path is de-

termined by the bottleneck bandwidth of all component links in each time slot. MinVBP

addresses this issue by keeping track of the bottleneck bandwidth of the computed path. At

each relaxation step, the bottleneck bandwidth b′(vs,v)
[j] from vs to node v is computed. The

algorithm computes the corresponding data transfer end time of data of size δ from vs to v

using bandwidth b′(vs,v)
[j], and updates the minimal data transfer end time tmin

end at the end of

each loop. The total time complexity of MinVBP is O(z ·m · (n2+m · (z+T))).

73

Algorithm 13 MinVBP(G,M,B,vs,vd,δ)

1: tmin
end = ∞;

2: for i = 1 to ∑M− z do

3: if i ≡ 1 then

4: c[j] = 1, ∀ j ∈ [1,z];
5: else

6: k = argmin
j∈[1,z],c[j]<∑M[j,∗]

{Ψ(
B[j,]

c[j]+1
,δ)};

7: c[k] = c[k]+1;

8: end if

9: for all l ∈ E do

10: bl[j] = min
k∈[1,z],M[k,l]≡1

(
B[k, j]
c[k]),∀ j ∈ [0,T −1];

11: end for

12: for all v ∈V do

13: tend[v] = ∞;

14: end for

15: tend[vs] = 0;

16: b(vs,vs)[j] = ∞,∀ j ∈ [0,T −1];
17: Q =V ;

18: while Q 6= /0 do

19: u = dequeue(Q);
20: if u ≡ vd then

21: break;

22: end if

23: for all v ∈ Q,(u,v) ∈ E and the computed path from vs to u uses at most c[j]−1

links from the j-th LCC that contains (u,v), ∀ j ∈ [1,z] do

24: b′(vs,v)
[k] = min(b(vs,u)[k],b(u,v)[k]),∀k ∈ [0,T −1];

25: Compute the data transfer end time t ′end of data of size δ from vs to v using

bandwidth b′(vs,v)
;

26: if tend[v]> t ′end then

27: tend[v] = t ′end;

28: b(vs,v)[k] = b′(vs,v)
[k],∀k ∈ [0,T −1];

29: end if

30: end for

31: end while

32: if tmin
end > tend[vd] then

33: tmin
end = tend[vd];

34: end if

35: end for

36: return tmin
end .

74

5.4 Performance Evaluation

We conduct simulation-based performance comparisons between the heuristics for FBP and

VBP. Realistic overlay networks of a two-layer hierarchy with various sizes and topologies

are generated in the simulation. Each simulated lower-layer network has a randomly gen-

erated network topology for a given number of nodes and links, and the TB list of each link

is also randomly generated with residual bandwidth ranging from 0.2 Gbps to 10 Gbps at

each time slot with the same length of 1 second. The residual bandwidths follow a normal

distribution according to the following function:

bl[i] = 0.2+10 · (1− e−
1
2 (3x)2

), (5.4.1)

where x is randomly selected within the range of [0,1]. A number of nodes from the lower-

layer network are selected to serve as overlay nodes. An overlay link that connects two

overlay nodes are computed by Breadth First Search, which corresponds to a path between

these two nodes in the lower-layer network. Then the LCC model is constructed based on

the correlations among these overlay links.

5.4.1 Comparison of Algorithms for FBP

We evaluate the performance of the approximate algorithm MaxBW in LCC-overlay net-

works. MaxBW is compared with the optimal algorithm and modified Dijkstra’s algorithm

using various simulated networks. Similar to MaxBW , the optimal algorithm gradually

increases the number of links from each LCC and tries all possible combinations of C[i]

links from the i-th LCC and the combinations of links from different LCCs. The modified

Dijkstra’s algorithm first computes the widest path without considering the link LCCs, and

75

then computes the path bandwidth by considering the LCCs of the links on the computed

path.

Since the computational complexity of the optimal algorithm is exponential, the per-

formance of MaxBW is compared with that of the optimal algorithm in 200 small-scale

overlay networks with 8 overlay nodes, which are built on top of lower-layer networks

with 15 nodes and 30 links. MaxBW and the optimal algorithm are run in each of these

200 networks, and the path bandwidth of two resultant scheduling schemes is measured.

Fig. 5.3 shows a histogram-like performance comparison, where the x-axis represents the

ratio of path bandwidth obtained by MaxBW over the optimal bandwidth, and the y-axis

represents the percentage of sample networks fall in each ratio range. The figure shows that

MaxBW achieves the optimal performance in 98% of all the test cases. Since the problem

search space is relatively small when there are only 8 overlay nodes, MaxBW approaches

the optimality with a high probability in such small-scale networks.

MaxBW is further compared with a modified Dijkstra’s algorithm in a series of 200

large-scale networks. The number of nodes and links in the lower-layer networks is fixed

to be 100 and 300, respectively, and the number of overlay nodes is varied from 10 to 90

at an interval of 10. For each given number of overlay nodes, 200 overlay network in-

stances are randomly generated, and these two algorithms are run in each of these network

instances. The percentage of network instances in which MaxBW outperforms the modi-

fied Dijkstra’s algorithm versus the ratio of the overlay network size over the lower-layer

network size is plotted in Fig. 5.4, while in the rest network instances, these two algorithms

achieve the same performance. The figure shows that the modified Dijkstra’s algorithm is

able to achieve the actual bandwidth that is close to the one computed by MaxBW , although

76

0.75 0.8 0.85 0.9 0.95 1 1.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Banadwidth computed by MaxBW / Optimal bandwidth

P
e

rc
e

n
ta

g
e

 o
f

s
a

m
p

le
s

Figure 5.3: Performance comparison of MaxBW and the optimal algorithm in 200 sample

networks with 8 overlay nodes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Percentage of overlay nodes

P
e

rc
e

n
ta

g
e

 o
f

s
a

m
p

le
s

Figure 5.4: Percentage of network instances in which MaxBW outperforms the modified

Dijkstra’s algorithm versus the ratio of the overlay network size over the lower-layer net-

work size.

77

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
20

30

40

50

60

70

80

90

100

Percentage of overlay nodes

A
v
e

ra
g

e
 b

a
n

d
w

id
th

 (
M

b
p

s
)

MaxBW

Dijkstra’s algorithm

Figure 5.5: Average bandwidth versus the ratio of the overlay network size over the lower-

layer network size.

the modified Dijkstra’s algorithm does not consider link LCCs in the path computation. The

main reason is that the links on a single path are not very likely correlated, which means that

an overlay path rarely traverses a physical link segment more than once. When the number

of overlay nodes increases, both of these algorithms tend to achieve the optimal perfor-

mance, resulting in insignificant performance differences. For the network instances where

MaxBW outperforms the modified Dijkstra’s algorithm, the average bandwidths computed

by these two algorithms are plotted in Fig. 5.5, which indicates that MaxBW significantly

improve the performance when the links on the widest path are correlated, where the widest

paths are computed without considering LCCs.

78

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Percentage of overlay nodes

P
e

rc
e

n
ta

g
e

 o
f

s
a

m
p

le
s

Figure 5.6: Percentage of network instances in which MinVBP outperforms the modified

Dijkstra’s algorithm versus the ratio of the overlay network size over the lower-layer net-

work size.

5.4.2 Comparison of Algorithms for VBP

A modified Dijkstra’s algorithm for VBP (or FPVB) in networks without LCC was pro-

posed in the previous chapter. This algorithm is adopted for VBP in LCC-overlay net-

work for comparison. Both MinVBP and the modified Dijkstra’s algorithm are executed

in various simulated large-scale overlay networks with the same settings as described in

the previous subsection. The data size is set to 3 GBytes. The percentage of the network

instances in which MinVBP outperforms the modified Dijkstra’s algorithm against the ratio

of the overlay network size over the lower-layer network size is plotted in Fig. 5.6, while

in the rest network instances, these two algorithms achieve the same performance. For the

network instances in which MinVBP outperforms the modified Dijkstra’s algorithm, the

average data transfer end time computed by these two algorithms is plotted in Fig. 5.7.

79

The performance of MinVBP illustrated in Fig. 5.6 and Fig. 5.7 is very similar to the per-

formance of MaxBW . When the number of overlay nodes increases, the number of link

correlations decreases. Hence, the computed path has a relatively higher bandwidth and

the transfer end time decreases accordingly.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
6

7

8

9

10

11

12

13

14

15

16

Percentage of overlay nodes

A
v
e

ra
g

e
 t

ra
n

s
fe

r
e

n
d

 t
im

e
 (

s
e

c
)

MinVBP

Dijkstra’s algorithm

Figure 5.7: Average data transfer end time versus the ratio of the overlay network size over

the lower-layer network size.

80

Chapter 6

Distributed Bandwidth Scheduling

6.1 Problem Formulation

Most existing scheduling algorithms are focused on centralized advance bandwidth reser-

vation in high-performance networks [19] using a centralized control plane. We formulate

four basic advance bandwidth scheduling problems and then develop distributed solutions:

Given a graph G = (E,V) with a time-bandwidth list T B for each link l ∈ E, source vs and

destination vd ,

• Fixed-Bandwidth: Compute a path from vs to vd with a fixed bandwidth β in time

slot [ts, te].

• Highest-Bandwidth: Compute a path from vs to vd with the highest available band-

width in time slot [ts, te].

• First-Slot: Compute the earliest start time of a path from vs to vd with a fixed band-

width β for duration td.

• All-Slots: Compute all start time slots of all paths from vs to vd with a fixed band-

width β for duration td.

81

Note that the solution to the First-Slot problem is the earliest start time, while the solu-

tion to the All-Slots problem is a union of all feasible start times. If t is a feasible start time

in the solution for all-slots, the computed path has bandwidth β from t to t + td .

6.2 Distributed Routing and Bandwidth Scheduling Algo-

rithms

We propose an optimal bandwidth scheduling algorithm in a distributed manner for each

of these problem. The proposed algorithms are based on the BFS and Bellman-Ford algo-

rithms and are different from the existing link-state and distance-vector routing protocols:

a node makes a routing decision based on its local TB lists and connectivity information,

and only broadcasts its own information to its neighbor nodes. Although link-state rout-

ing protocols are easy to implement, the periodical broadcasting of node connectivity and

link TB lists incurs a significant amount of overhead. Furthermore, if the changes in node

connectivity and link bandwidth are not promptly updated, the network may operate with

inaccurate information.

We use two types of routing messages between nodes for distributed path exploration

for advance bandwidth scheduling: (i) bandwidth reservation message, and (ii) acknowl-

edgment (ACK) message. The bandwidth scheduler running on every node incorporates

the scheduling algorithms and handles the routing messages during path exploration. Node

and link states can be updated by simple periodic message exchanges between neighbor

nodes. Every node broadcasts a HELLO message to its neighbor nodes. Upon the receival

of a HELLO message, a node simply replies with an ACK message to let the neighbor node

know that the link between them is active.

82

6.2.1 Fixed-Bandwidth

Given a fixed-bandwidth (FB) reservation request rFB
i , the fixed-bandwidth scheduling

problem is to compute a dedicated channel from source node vs to destination node vd

with specified bandwidth β in time slot [ts, te]. The source node vs receives rFB
i from an

end user, and initiates path exploration by broadcasting rFB
i to its neighbor nodes. When an

intermediate node receives rFB
i from one of its neighbor nodes, it checks the TB lists of its

outgoing links and determines whether rFB
i can be scheduled on these links. An example

of bandwidth reservation process is shown in Fig. 6.1. After receiving rFB
i from node v1,

node v2 checks the TB lists of three outgoing links (v2,v3),(v2,v4) and (v2,v5). If rFB
i is

feasible only on links (v2,v3) and (v2,v5), node v2 sends rFB
i to nodes v3 and v5. Once rFB

i

reaches the destination node vd , node vd replies with a positive acknowledgment message,

which is echoed all the way back to the source node.

FB

ir

FB

ir

FB

ir

1
v

4
v

3
v

2
v

5
v

Figure 6.1: An example of bandwidth reservation message processing for fixed-bandwidth

problem.

The algorithm details for the fixed-bandwidth scheduling problem are provided in Al-

gorithm 14. Each node maintains a job queue Q that stores bandwidth reservation requests.

When a bandwidth reservation request arrives, Q is dynamically updated and the request

83

Algorithm 14 Routing algorithm for fixed-bandwidth problem

1: A job queue Q is allocated for storing all requests.

2: Listening to routing messages.

3: if receive a fixed-bandwidth reservation request rFB
i from its neighbor node u then

4: Add u to V
pre

i .

5: if rFB
i is not in Q then

6: Add rFB
i to Q and mark rFB

i as “pending”.

7: if I am the destination node of rFB
i then

8: Send a positive acknowledgment of rFB
i to u.

9: else

10: Compute the neighbor node set Si (excludes u) such that rFB
i can be scheduled

on each link between current node and any neighbor node in Si. If Si 6= /0,

broadcast rFB
i to all nodes in Si; otherwise, send a negative acknowledgment of

rFB
i to u and mark rFB

i as “failed”. Initialize ni = |Si|.
11: end if

12: else if rFB
i is marked as “failed” in Q then

13: Send a negative acknowledgment of rFB
i to u.

14: end if

15: Return to line 2.

16: end if

17: if receive an acknowledgment of request rFB
i from its neighbor node u and u is in Si

then

18: Remove u from Si.

19: if the acknowledgment is positive then

20: Allocate the bandwidth on the link between the current node and node u for rFB
i .

Mark rFB
i as “successful”. Send a positive acknowledgment of rFB

i to the first

node that is added to V
pre

i .

21: else

22: ni = ni −1.

23: if ni ≤ 0 then

24: Mark rFB
i as “failed”. Send a negative acknowledgment of rFB

i to all nodes in

V
pre

i .

25: end if

26: end if

27: Return to line 2.

28: end if

84

state is changed. A bandwidth reservation request in Q is in one of three states: “pend-

ing”, “successful” and “failed”. The scheduling daemon waits for control messages and

processes bandwidth reservation messages in lines 3-16 and acknowledgment messages in

lines 17-28. (i) When the current node receives a fixed-bandwidth reservation request rFB
i

from its neighbor node u, the algorithm first adds u to a node set V
pre

i that stores the all the

previous node from which rFB
i is received and is used for sending back the acknowledg-

ment. The algorithm then checks whether rFB
i is in Q. If rFB

i is not in Q, the algorithm adds

rFB
i to Q, marks rFB

i as “pending”, and replies with a positive acknowledgment if rFB
i is

destined to itself; otherwise, the algorithm computes the potential qualified neighbor node

set Si. A neighbor node is qualified if rFB
i can be successfully scheduled on the link between

the current node and that neighbor node based on its time-bandwidth list. If Si is not empty,

the current node broadcasts rFB
i to all nodes in Si, which is an expansion performed in BFS.

If Si is an empty set, which means that there does not exist any qualified neighbor node,

the current node replies with a negative acknowledgment to u where rFB
i received from and

mark rFB
i in Q as “failed”. In the case that rFB

i is in Q but rFB
i is already marked as “failed”,

the current node sends a negative acknowledgment of rFB
i to u since there does not exist any

feasible path that passes the current node to satisfy rFB
i . (ii) When the current node receives

an acknowledgment of rFB
i from its neighbor u and u is in Si, the algorithm removes u from

Si to avoid receiving duplicate acknowledgments from the same neighbor node and checks

whether the acknowledgment is positive or negative. If the acknowledgment is positive,

the algorithm allocates the bandwidth on the link between current node and u for rFB
i and

sends a positive acknowledgment of rFB
i to the first node that is added to V

pre
i . Otherwise,

the algorithm decreases ni by 1. Note that ni is initialized to be |Si| in line 10 and is used to

85

count the number of received negative acknowledgments from neighbor nodes in Si. If ni

reaches 0, which indicates that the current node receives negative acknowledgments from

all nodes in Si and there does not exist a qualified link of the current node, the algorithm

marks rFB
i as “failed” and sends a negative acknowledgment of rFB

i to all nodes in V
pre

i .

An example of the algorithm dealing with acknowledgment messages is shown in Fig. 6.2,

where the solid line represents the fixed-bandwidth reservation request and the dashed line

represents the acknowledgment. The current node is v3 that receives rFB
i from both v1 and

v2, and broadcasts it to v4 and v5. In this example, V
pre

i = {v1,v2}, Si = {v4,v5}. The

positive acknowledgment process is shown in Fig. 6.2 (a): once v3 receives a positive ac-

knowledgment of rFB
i from one node in Si (v5), it sends the acknowledgment to the node

that is firstly added to V
pre

i (v1). The negative acknowledgment process is shown in Fig. 6.2

(b): only when v3 receives negative acknowledgment of rFB
i from all nodes in Si, v3 broad-

casts the negative acknowledgment to all nodes in V
pre

i . The routing exploration for rFB
i is

terminated when the source node of rFB
i receives an acknowledgment.

FB

ir

FB

ir

FB

ir

1
v

4
v

3
v

2
v

5
v

FB

ir

Positive

ACK

Positive

ACK

FB

ir

FB

ir

FB

ir

1
v

4
v

3
v

2
v

5
v

FB

ir

Negative
ACK

Negative

ACK

Negative

ACK

Negative
ACK

(a) (b)

Figure 6.2: An example of acknowledgment message processing for fixed-bandwidth prob-

lem.

86

Performance Tuning

Algorithm 14 is simple and scalable, but some extra work is needed to improve its perfor-

mance. A deadlock may occur during the acknowledgment message processing, as shown

in Fig. 6.3, where there is a cycle of rFB
i among v2, v3 and v4, but v2 only sends rFB

i to

v3 once. With the qualified neighbor node set Si = {v2,v5} for rFB
i , v4 receives a negative

acknowledgment from v5 and is waiting for the acknowledgment from v2 before sending

any acknowledgments to v3. However, v2 is waiting for the acknowledgement from v3 and

v3 is waiting for the acknowledgment from v4. Therefore, there is a deadlock among v2, v3

and v4. To address this problem, a set of nodes that a bandwidth reservation request have

traversed can be encoded. When the algorithm computes Si for rFB
i , Si only includes the

qualified neighbor nodes that are not in the set of nodes that rFB
i have traversed. There-

fore, there is no bandwidth reservation request from v4 to v2 in the above example and the

deadlock is avoided.

FB

ir
FB

ir
FB

ir

1
v

4
v

3
v

2
v

5
v

FB

ir

FB

ir

Figure 6.3: An example of deadlock in Algorithm 14.

In a special case that a neighbor node u in Si breaks down right after the current node

broadcasting rFB
i , and the current node receives negative acknowledgments from all the

nodes in Si except u, ni never reaches 0 in line 23 of Algorithm 14. If there does not

exist a feasible path to satisfy rFB
i , the source node of rFB

i may never receive a negative

87

acknowledgment. The solution is that detecting the breakdown of a neighbor node u in

Si should be equivalent to receiving a negative acknowledgment from u for the pending

bandwidth reservation request rFB
i . Also, all the scheduled bandwidth reservations that

using u must be canceled. The current node sends a CANCEL message along the path

for each scheduled bandwidth reservation request using the current node and u, and the

reserved bandwidth on the corresponding links will be released. Once the source node

of a bandwidth reservation request receives a CANCEL message, the source node initiates

another routing exploration to find a new path. The handling of node failures can be applied

to the rest algorithms.

Algorithm Analysis

Algorithm 14 exhibits several salient features.

(i) Loop free: The job queue that maintains all incoming bandwidth reservation requests

and the verification condition in line 5 ensure that each node broadcasts a bandwidth reser-

vation request at most once. Hence, there is no loop for a bandwidth reservation request.

Further more, the condition of whether u is in Si in line 17 and update of Si in line 18 ensure

that each node receives at most one acknowledgment from a neighbor node in Si. Hence,

there is no loop for an acknowledgment.

(ii) Fault tolerant: Any node and link failure can be detected by the periodical HELLO

messages exchanged between nodes. Hence, any node failure does not affect the routing

exploration process if there still exists a feasible path.

(iii) Time efficient: The running time complexity of this algorithm is O(T ·m) in the

worst case. Unlike most distributed routing algorithms where each node must wait for a

88

constant time period to collects all messages from its neighbor nodes, the algorithm pro-

cesses each incoming routing message immediately to speed up path exploration. In the

worst case, the algorithm involves O(m) message communications in the entire network.

6.2.2 Highest-Bandwidth

Given a highest-bandwidth reservation quest rHB
i , the highest-bandwidth scheduling prob-

lem is to compute a dedicated channel from source node vs to destination node vd with the

highest available bandwidth during time slot [ts, te]. This problem can be solved by extend-

ing Dijkstra’s shortest path algorithm in the centralized scheme. We propose a distributed

solution based on Bellman-Ford algorithm to this problem. The source node vs receives

rHB
i from an end user, initializes the highest bandwidth of rHB

i to be infinity, and initiates

the path exploration process by broadcasting rHB
i to its neighbor nodes. The neighbor nodes

computes their highest bandwidth according to the incoming rHB
i , and broadcast their re-

sults only if the value is increased. Note that the highest available bandwidth of the entire

path is determined by the bottleneck bandwidth of all component links in the specified time

slot. Hence, the highest bandwidth of rHB
i on each node is dynamically updated during the

path exploration process.

The algorithm details for the highest-bandwidth scheduling problem are provided in

Algorithm 15. Let BWi(vs,vcur) denote the highest bandwidth of the path found so far from

the source node vs to the current node vcur for rHB
i in Q, and BW ′

i (vs,vcur) denote that

for the incoming rHB
i . The algorithm waits for control messages, and processes bandwidth

reservation messages in lines 3-22 and acknowledgment messages in lines 23-26. When the

current node receives a highest-bandwidth reservation request rHB
i from its neighbor node u,

89

the algorithm checks whether rHB
i is in Q. If rHB

i is not in Q, the algorithm adds rHB
i to Q. If

the highest bandwidth of the incoming rHB
i is larger than that of rHB

i in Q (BW ′
i (vs,vcur) >

BWi(vs,vcur)), the algorithm updates the highest bandwidth of rHB
i in Q. Then the algo-

rithm computes the highest bandwidth of the path found so far from the source node vs to

every neighbor node v by calculating BWi(vs,v) = min{BWi(vs,vcur),BWi(vcur,v)}, where

BWi(vcur,v) is the highest bandwidth of the link (vcur,v) during the time slot specified in

rHB
i . The algorithm encodes BWi(vs,v) in rHB

i and sends rHB
i to v. If the highest bandwidth

of rHB
i in Q does not increase (BW ′

i (vs,vcur) ≤ BWi(vs,vcur)), the algorithm returns to line

2 directly to avoid message broadcasting. If the current node is the destination node of

rHB
i , the algorithm restarts a timer for rHB

i . This timer is used by the destination node to

acknowledge the granting of the request since the destination node does not know when the

path exploration process reaches an equilibrium. If the destination node does not receive

any updated rHB
i from its neighbor nodes for a period of time, it is very likely that the path

exploration process for rHB
i has reached an equilibrium. Once the timer for rHB

i expires,

the destination node determines the highest bandwidth of the entire path and sends an ac-

knowledgment of rHB
i that carries the highest bandwidth to v

pre
i , which is the best neighbor

node on the widest path from the source node to the current node. When the current node

receives an acknowledgment of rHB
i from its neighbor u, it allocates the bandwidth on the

link between the current code and node u, and forwards the acknowledgment of rHB
i to

node v
pre
i . This backtracking process continues until the source node of rHB

i receives the

acknowledgment.

90

Algorithm 15 Routing algorithm for highest-bandwidth problem

1: A job queue Q is allocated for storing all requests.

2: Listening to routing messages.

3: if receive a highest-bandwidth reservation request rHB
i from its neighbor node u then

4: if I am the destination node of rHB
i then

5: Restart a timer for rHB
i .

6: end if

7: if rHB
i is not in Q then

8: Add rHB
i to Q.

9: else if BW ′
i (vs,vcur)> BWi(vs,vcur) then

10: BWi(vs,vcur) = BW ′
i (vs,vcur)

11: else

12: Return to line 2.

13: end if

14: Set v
pre
i = u.

15: if I am not the destination node of rHB
i then

16: Compute the neighbor node set Si (exclude u).

17: for all v ∈ Si do

18: BWi(vs,v) = min{BWi(vs,vcur),BWi(vcur,v)}. Encode BWi(vs,v) to rHB
i and

send rHB
i to v.

19: end for

20: end if

21: Return to line 2.

22: end if

23: if receive an acknowledgment of request rHB
i from its neighbor node u then

24: Allocate the bandwidth on the link between the current node and node u for rHB
i .

Forward acknowledgment of rHB
i to node v

pre
i .

25: Return to line 2.

26: end if

Performance Tuning

The time cost of the path exploration process is affected by the timer on the destination

node, which needs to be carefully decided according to the network size and link delay.

Let DELAY denote the average delay of a message communication between two adjacent

nodes, which includes the processing delay on two end nodes and the link delay between

them. A node can estimate DELAY by measuring the round trip time of a message between

itself and its neighbor nodes. Since a bandwidth reservation message traverses at least 1

91

hop and at most n−1 hops from vs to vd , the difference between the arrival time of any two

request messages is at most (n−2) ·DELAY , which could be used to set the timer on vd .

Algorithm Analysis

Algorithm 15 also exhibits similar features as Algorithm 14.

(i) Loop free: A node broadcasts rHB
i to its neighbor nodes only when the highest

bandwidth of rHB
i increases. When a node broadcasts rHB

i to its neighbor nodes, the highest

bandwidth of rHB
i does not increase during the path exploration process. Hence, there is

no loop for a bandwidth reservation request. Since node v
pre
i is set only when the highest

bandwidth of rHB
i increases and the acknowledgment is sent to v

pre
i , there is no loop for an

acknowledgment, either.

(ii) Fault tolerant: Since each node makes a local decision and acts as an autonomous

system, a node or link failure would not affect the path exploration process. If one node

on the computed path for rHB
i breaks down after an equilibrium is achieved but before

the acknowledgment of rHB
i is forwarded, the source node of rHB

i will never receive the

acknowledgment. This problem can be solved as follows. The failure of a node can be de-

tected by its neighbor nodes by periodical HELLO message exchanges between them. Each

neighbor node then sends a negative acknowledgment of rHB
i to its v

pre
i . The source node

of rHB
i eventually receives the negative acknowledgment of rHB

i and may initiate another

path exploration process for rHB
i .

(iii) Time efficient: The running time complexity of this algorithm is O(m ·T) in the

worst case. Except the destination node, all other nodes process each incoming routing

92

message immediately. In the worst case, the algorithm requires O(n3) message broadcast-

ing as the distributed Bellman-Ford algorithm.

6.2.3 First-Slot and All-Slots

Given a first-slot or all-slots bandwidth reservation request, rFS
i or rAS

i , the first-slot or all-

slots bandwidth scheduling problem is to compute the time slot with the earliest start time

or all possible time slots of a dedicated channel from vs to vd with a fixed bandwidth β for

duration td. Obviously, first-slot is a special case of all-slots, and the solution to all-slots can

be applied to first-slot. We propose a distributed routing algorithm based on Bellman-Ford

algorithm for these two problems.

A list of start time [ti, ti+1] is defined for each link l ∈ E, denoted as ST (l). For any time

point t during a start time slot [ti, ti+1], i.e. t ∈ [ti, ti+1], link l has available bandwidth of β

from time point t to time point t + td . The time slots on ST are disjoint and arranged in an

ascending order. The ST list of a link can be constructed from its TB list in O(T) time, and

the ST list of a path can be constructed by combining the ST lists of all component links.

Let ST (vs,v) denote the union of the ST lists of all paths from source node vs to node v.

Hence, ST (vs,vd) contains all start time slots of all paths from vs to vd with bandwidth β

for duration td. Let
⊕

and
⊗

denote the point-wise merging and intersection operations

of the time slots in two ST lists, respectively. ST (l)
⊕

/0 = ST (l), ST (l)
⊕

ℜ+ = ℜ+,

ST (l)
⊗

/0 = /0, and ST (l)
⊗

ℜ+ = ST (l), where /0 is the empty time slot and ℜ+ is the

infinite time slot of non-negative real values.

The algorithm details for the all-slots bandwidth scheduling problem are provided in

Algorithm 16. The source node vs receives rAS
i from an end user, initializes the ST list of

93

Algorithm 16 Routing algorithm for all-slots problem

1: A job queue Q is allocated for storing all requests.

2: Listening to routing messages.

3: if receive an all-slots bandwidth reservation request rAS
i from its neighbor node u then

4: if I am the destination node of rAS
i then

5: Restart a timer for rAS
i .

6: end if

7: if rAS
i is not in Q then

8: Add rAS
i to Q. Set v

pre
i = u.

9: else if ST ′
i (vs,vcur) STi(vs,vcur) then

10: STi(vs,vcur) = STi(vs,vcur)
⊕

ST ′
i (vs,vcur).

11: else

12: Return to line 2.

13: end if

14: if I am not the destination node of rAS
i then

15: Compute the neighbor node set Si (exclude u).

16: for all v ∈ Si do

17: STi(vs,v) = STi(vs,vcur)
⊗

STi(vcur,v). Encode STi(vs,v) to rAS
i and send rAS

i to

v.

18: end for

19: end if

20: Return to line 2.

21: end if

22: if receive an acknowledgment of request rAS
i from its neighbor node u then

23: Forward acknowledgment of rAS
i to node v

pre
i .

24: Return to line 2.

25: end if

rAS
i to be ST (vs,vs) = ℜ+ and initiates the path exploration process by broadcasting rAS

i to

its neighbor nodes. Let STi(vs,vcur) denote the list of start time slots of the paths found so

far from the source node vs to the current node vcur for rAS
i in Q, and ST ′

i (vs,vcur) denote

that for the incoming rAS
i . The algorithm is modified from Algorithm 15 by replacing the

bandwidth operation with the ST list operation. If the ST list of the incoming rAS
i is not a

subset of the ST list of rAS
i in Q (i.e. ST ′

i (vs,vcur) STi(vs,vcur)), the algorithm updates the

ST list of rAS
i in Q (i.e. STi(vs,vcur) = STi(vs,vcur)

⊕

ST ′
i (vs,vcur)). Here, the relationship

 of two ST lists holds if at least one time slot in ST ′
i (vs,vcur) does not belong to any time

94

slots on STi(vs,vcur). Due to the monotonicity property of
⊕

operation, once start times

are placed on STi(vs,vcur), they will not be removed. Then the algorithm computes the start

time slots of all paths found so far from the source node vs to every neighbor node v by

calculating STi(vs,v) = STi(vs,vcur)
⊗

STi(vcur,v), where STi(vcur,v) is the ST list of link

(vcur,v) for rAS
i . The algorithm encodes STi(vs,v) to rAS

i and send rAS
i to v. If the current

node is the destination node of rAS
i , the algorithm restarts a timer for rAS

i . Once the timer

for rAS
i expires, the destination node sends an acknowledgment of rAS

i that carries all start

time slots STi(vs,vd) to v
pre
i .

For first-slot problem, the earliest start time is the lower boundary of the first time slot

on the returned ST list. For the all-slots problem, the end user at the source node may

choose one or multiple start times from the returned ST list. Once the start time t for a

feasible path is decided, Algorithm 14 for the fixed-bandwidth problem can be applied to

perform the actual path computation and bandwidth scheduling with ts = t and te = t + td .

The runtime complexity of Algorithm 16 is O(m) in terms of
⊕

and
⊗

operations.

Since the complexities of
⊕

and
⊗

operations are determined by the length of the ST

list, which is at most m ·T in the algorithm, the complexities of
⊕

and
⊗

operations are

of O(m ·T). Therefore, the algorithm complexity is O(m2 ·T) in the worst case. Due to

the similarity in the algorithm structure, the performance tuning and algorithm analysis for

Algorithm 15 are applicable to Algorithm 16.

6.3 Performance Evaluation

Simulation-based evaluations are conducted for the proposed distributed scheduling al-

gorithms. For performance comparison, we also design and implement a simple greedy

95

algorithm. In the simulations, each simulated network is randomly generated with an ar-

bitrary network topology with 50 nodes and 200 links, and the TB list of each link is also

randomly generated with residual bandwidths ranging from 0.2 Gbps to 10 Gbps in each

time slot with an identical length of 1 second. The residual bandwidths follow a normal

distribution:

bl[i] = 0.2+10 · (1− e−
1
2 (3x)2

), (6.3.1)

where x is a random variable within the range of [0,1]. There are 600 time slots in the

time-bandwidth list of each link.

6.3.1 Comparison of Algorithms for Fixed-bandwidth

Performance comparison between Algorithm 14 and the traceroute based algorithm is con-

ducted for the fixed-bandwidth problem using various simulated networks. Note that tracer-

oute is implemented in OSCARS to find the shortest path within ESnet that MPLS LSP

traverses [28]. Once the entire path controlled by OSCARS is obtained, each link on the

path is then checked for available bandwidth.

Fixed-bandwidth is a decision problem, and the satisfiability of a fixed-bandwidth re-

quest is determined by the availability of the network resource. Algorithm 14 is an optimal

algorithm that is able to find a feasible solution when there exists one. The simulation

randomly generates 200 network instances of different topologies, in each of which, the

simulation randomly generate a series of fixed-bandwidth requests with requested band-

width β ranging from 0.24 Gbps to 2.4 Gbps at an interval of 0.24 Gbps. The duration

of a request te − ts is constrained within the the range of [1, 10]. Then Algorithm 14 and

96

0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β (Gbps)

A
c
c
e

p
ta

n
c
e

 r
a

te

Algorithm 14

Traceroute

Figure 6.4: Acceptance rate comparison between Algorithm 14 and traceroute for fixed-

bandwidth problem.

traceroute are run on these fixed-bandwidth requests and a series of acceptance rates in

response to different β values are plotted in Fig. 6.4. The acceptance rate is defined as the

ratio of successfully scheduled requests and 200 submitted requests. The figure shows that

Algorithm 14 exhibits superior performance over the traceroute-based method. Since the

requests with larger β values require more network resources, the acceptance rate decreases

as β increases.

6.3.2 Comparison of Algorithms for Highest-bandwidth

The performance of Algorithm 15 is compared with that of a greedy algorithm for the

highest-bandwidth problem. In the greedy algorithm, a node always chooses one neighbor

node whose link has the highest available bandwidth in the specified time slot. In each

of 200 randomly generated network instances, a series of highest-bandwidth requests with

duration td = te − ts ranging from 1 to 10 seconds at an interval of 1 second are generated.

97

Algorithm 15 and the greedy algorithm are run on these highest-bandwidth requests and the

average and standard deviation of the highest available bandwidth in response to different

td values are plotted in Fig. 6.5, which shows that Algorithm 15 outperforms the greedy ap-

proach in all the cases. The figure also shows that the average highest available bandwidth

decreases as td increases.

2 4 6 8 10
0

2

4

6

8

10

12

t
d
 (sec)

H
ig

h
e

s
t

b
a

n
d

w
id

th
 (

G
b

p
s
)

Algorithm 15

Greedy

Figure 6.5: Highest bandwidth comparison (mean and standard deviation) between Algo-

rithm 15 and greedy algorithm for highest-bandwidth problem.

6.3.3 Comparison of Algorithms for First-slot and All-slots

We design Algorithm 16 for both first-slot and all-slots problems. The performance of

Algorithm 16 is compared with that of a greedy method for the first-slot problem. In the

greedy algorithm, a node always chooses one neighbor node such that the earliest start

time of the path from the source node to the neighbor node for that request is minimized.

A series of first-slot requests with td = 5 seconds and requested bandwidth β ranging from

0.24 Gbps to 2.4 Gbps at an interval of 0.24 Gbps are randomly generated. The average

98

and standard deviation of the earliest start time in response to different β values for both

algorithms are plotted in Fig. 6.6. In most of the cases, the earliest start time computed by

Algorithm 16 is 0 second. The largest earliest start time is 600 seconds since there is no

bandwidth reservation on each link after 600 seconds. The figure shows that the average of

200 earliest start time computed by Algorithm 16 is much less than that computed by the

greedy method.

0.5 1 1.5 2
−200

−100

0

100

200

300

400

500

600

β (Gbps)

E
a

rl
ie

s
t

s
ta

rt
 t

im
e

 (
s
e

c
)

Algorithm 16

Greedy

Figure 6.6: Earliest start time comparison (mean and standard deviation) between Algo-

rithm 16 and greedy algorithm for first-slot problem.

The performance of Algorithm 16 is also compared with that of a greedy algorithm for

the all-slots problem. The objective function in the all-slots problem is the total length of

start times. In the greedy method, a node always chooses one neighbor node such that the

total length of start times of the path from the source node to the neighbor node for that

request is maximized. The simulation settings for the all-slots problem are the same as

those for the first-slot problem. The average and standard deviation of the total length of

99

start times in response to different β values are plotted in Fig. 6.7, which shows that the

performance superiority of Algorithm 16 is dominant in all cases.

0.5 1 1.5 2
−100

0

100

200

300

400

500

600

700

β (Gbps)

T
o

ta
l
le

n
g

th
 o

f
s
ta

rt
 t

im
e

s
 (

s
e

c
)

Algorithm 16

Greedy

Figure 6.7: Total length of start times comparison (mean and standard deviation) between

Algorithm 16 and greedy algorithm for all-slots problem.

100

Chapter 7

Periodical Bandwidth Scheduling

7.1 Problem Formulation

A periodical scheduling algorithm is launched periodically in a certain time interval to

schedule multiple data transfer requests accumulated during that interval. We study two

periodic multiple data transfers scheduling problems: (i) multiple data transfer allocation

(MDTA) to assign multiple data transfer requests on several pre-specified network paths for

the minimum total data transfer end time, and (ii) multiple fixed-slot bandwidth reservation

(MFBR) to satisfy multiple fixed time slot bandwidth reservation requests. These two

problems are formally defined as follows.

• Multiple Data Transfer Allocation (MDTA)

Given p pre-specified disjoint paths from a source vertex s to a destination vertex d

with an identical bandwidth b and k files of sizes δ1,δ2, ...,δk, find a task assignment

scheme that allocates k files on p paths to minimize the total file transfer end time.

• Multiple Fixed-slot Bandwidth Reservation (MFBR)

Given a graph G = (E,V) with an aggregated time-bandwidth list T Bl combining

the reservation information on all links l ∈ E and k fixed-slot bandwidth requests,

101

each of which specifies a source vertex si and a destination vertex di, a bandwidth

βi, and a future time slot (ts
i , t

e
i), where i = 1,2, ...,k, find a scheduling scheme that

computes network paths and allocates link bandwidths to maximize the number of

satisfied reservations.

In the MDTA problem, the user, whose primary interest is in completing the file transfer

task as soon as possible, does not need to specify the bandwidth and time slot for each

task. To minimize the total transfer end time, it is desired that the residual bandwidths of

each path be reserved for one file transfer at a time. In the case where only one path is

considered, the well-known Shortest Job First (SJF) algorithm finds the optimal solution.

When the number of paths is greater than one, the problem boils down to computing a

strategy that optimally distributes all file transfer tasks onto the pre-specified paths.

In the MFBR problem, each request is to find a path from a source vertex si to a des-

tination vertex di with a residual bandwidth of at least βi from start time ts
i to end time te

i .

Once a satisfied path for a particular request is obtained, the residual bandwidths of the

component links along that path are updated by subtracting the bandwidths reserved for the

current request. Hence, there is no guarantee that all bandwidth reservation requests could

be satisfied. The objective is to maximize the number of successful bandwidth reservations

given the network topology, residual bandwidths, and user requests.

7.2 Complexity Analysis and Algorithm Design

In this section, we design an optimal algorithm and provide the correctness proof for

MDTA. Also, we prove MFBR to be NP-complete and propose two heuristic algorithms.

102

7.2.1 Optimal Algorithm for MDTA

We design an optimal algorithm based on an extension of the Shortest Job First algorithm

(ESJF) for MDTA, which takes as input p disjoint paths from source s to destination d

with identical bandwidth b and k files of sizes δ1,δ2, ...,δk, and targets minimizing the

total transfer end time. The pseudo-code for the algorithm ESJF(p,{P},b,k,{δ}), where

{P} denotes the set of p disjoint paths with bandwidth b and {δ} denotes the set of k file

sizes, is shown in Algorithm 17. The ESJF algorithm starts with sorting the files in an

increasing order by their sizes, and then take turns to assign each file to one of the p paths.

This assignment evenly distributes smaller files onto multiple paths, which are transferred

before larger files. Apparently, transferring a smaller file before a larger one reduces the

total waiting time, resulting in a shorter total transfer end time. Once the assignment is

completed, the files on each path are transferred using the SJF algorithm.

Algorithm 17 ESJF(p,{P},b,k,{δ})

Sort the files in {δ} in an increasing order by sizes;

i = 1; j = 1;

while (i ≤ k) do

Assign the i-th file in {δ} to the j-th path in {P};

i = i+1;

j = j+1;

if j > p then

j = 1;

end if

end while

Theorem 9. ESJF produces the minimal total transfer end time for a given set of files.

Proof. To simplify the proof, we show a special case where p = 2, which can be extended

to a general case where p > 2. We first consider an even number k = 2n of files sorted by

their file sizes. The transfer time for each file is ti = δi/b, where t1 ≤ t2...≤ t2n. Note that

103

the transfer end time includes both waiting time and transfer time. After assigning the 2n

files to two paths using the ESJF algorithm, the total transfer end time on the first path P1

is:

TP1
= t1 +(t1+ t3)+(t1+ t3 + t5)+ ...+(t1+ t3 + t5...t2n−1), (7.2.1)

and the total transfer time on the second path P2 is

TP2
= t2 +(t2+ t4)+(t2+ t4 + t6)+ ...+(t2+ t4 + t6...t2n). (7.2.2)

After adding up Eqs. 7.2.1 and 7.2.2 and rearranging the equation, we obtain the total

transfer end time on two paths:

Ttotal = TP1
+TP2

=

n · (t1+ t2)+(n−1) · (t3+ t4)+(n−2) · (t5+ t6)

+...+(t2n−1 + t2n).

(7.2.3)

In Eq. 7.2.3, the coefficients of the factors, i.e. n,(n−1),(n−2), ...,1, are in the decreasing

order, while the times (t1+ t2),(t3+ t4), ...,(t2n−1+ t2n), which could be considered as a set

of combined jobs, are in the increasing order. Essentially, Eq. 7.2.3 presents a generalized

SJF scheme, which produces the minimal total time among all possible combinations. In

other words, if we exchange any ti with t j in this equation, the new result will be greater

than or equal to Eq. 7.2.3. When there are an odd number k = 2n− 1 of files, we could

simply add a new file with size 0 to the beginning of the file set, and then the proof remains

the same. Note that there are totally 2n optimal solutions to the MDTA problem when p= 2

because there are n combined jobs (t2i−1, t2i), in each of which, either component could be

assigned to one of the two paths. Proof ends.

104

7.2.2 MFBR is NP-Complete

To prove MFBR problem to be NP-Complete, we first define Widest Pair of Paths(WPP)

problem, which is a simplified version of the MFBR problem, and prove it to be NP-

complete. In [37], Shen et al. proved that Widest Pair of Disjoint Paths (Decoupled) is

NP-complete. However, in the WPP problem, the paths do not have to be disjoint.

Widest Pair of Paths (WPP): Given a graph G = (V,E) with available bandwidth bl

on each link l ∈ E, a source vertex s, a destination vertex d, and specified bandwidths β1

and β2. QUESTION: Do there exist paths P1 and P2 from s to d such that the bandwidth of

path P1, BW (P1)≥ β1 and the bandwidth of path P2, BW (P2)≥ β2?

Theorem 10. WPP problem is NP-complete.

Proof. WPP is obviously in NP because given a solution (a pair of paths) to WPP, one

can verify in polynomial time the validity of the solution by checking whether or not the

bandwidth of path Pi is greater or equal to βi, i = 1 or 2. Without loss of generality, we

assume that β1 < β2.

We now reduce the Disjoint Path Problem with Red and Blue arcs (DPPRB) [37] to

WPP. The DPPRB problem is defined as follows: Given a graph G = (V,E), where each

arc e ∈ E is colored either red or blue, a source vertex s and and a destination vertex d.

QUESTION: Do there exist two disjoint paths from s to d such that at least one of the paths

uses the red arcs only?

Let (G,s,d) be an arbitrary instance of DPPRB. We construct an instance (G′,b,s,d,β1,β2)

of WPP problem from the instance (G,s,d) in polynomial time such that G′ has two paths

from s to d of bandwidths no less than β1 and β2, respectively, if and only if there exist two

105

disjoint paths from s to d in G, at least one of which uses the red arcs only. We first set

G′ = G and the available bandwidth bl of the link l ∈ E ′ to 1 if the link l in G is colored

blue, otherwise bl = 2. Then we set β1 = 1, β2 = 2. Clearly, this construction process can

be accomplished in polynomial time.

Suppose that there exist two disjoint paths P1 and P2 from s to d in G such that at least

one of them, say, path P2, uses the red arcs only. We can find two corresponding paths P′
1

and P′
2 in G′, where P′

1 = P1 and P′
2 = P2. Since the red arcs composing P2 have available

bandwidth 2 in G′, BW (P′
2) = 2. Also, because the minimal bandwidth of all links is 1,

BW (P′
1) is at least 1. Hence, P′

1 and P′
2 compose a solution to WPP.

Conversely, let P′
1 and P′

2 be a pair of paths from s to d in G′ with BW (P′
1) ≥ 1 and

BW (P′
2) ≥ 2. It is obvious that P′

1 and P′
2 are disjoint as the maximum bandwidth of the

links is 2. We can find two corresponding paths P1 and P2 in G, where P1 = P′
1 and P2 = P′

2.

Path P2 contains red arcs only since blue arcs have bandwidth less than 2. Hence, P1 and

P2 compose a solution to DPPRB. This concludes the proof.

Theorem 11. MFBR problem is NP-complete.

Proof. We could restrict MFBR problem to WPP problem by allowing only instances

in which k = 2, s1 = s2, t1 = t2, and (ts
1, t

e
1) = (ts

2, t
e
2). The validity of NP-completeness

proof by restriction is established in [23], where “restriction” constrains the given, not the

question of a problem. The bandwidth of the link l is defined as the minimal residual

bandwidth during the time slot (ts
1, t

e
1) based on the aggregated time-bandwidth list T Bl .

Since WPP is NP-complete, so is MFBR. Proof ends.

106

7.2.3 Heuristic Algorithms for MFBR

We propose two heuristic algorithms for MFBR. Based on the distribution of the pre-

specified time slots of bandwidth reservations in MFBR, there are three cases: (i) When

all bandwidth reservations have the same pre-specified time slot, it has been proved to

be NP-complete above; (ii) When the pre-specified time slots of bandwidth reservations

are partially overlapped, it is still NP-complete for the overlapped portion; (iii) When the

pre-specified time slots of bandwidth reservations are complete disjoint, it is polynomially

solvable using a modified Dijkstra’s algorithm. In the algorithm design, we consider the

first case with an identical pre-specified time slot. Here, all bandwidth reservations are

assumed to have the same priority.

Greedy Algorithm

The objective of MFBR is to maximize the number of satisfied bandwidth reservations, and

hence scheduling the reservations that use less network resources first will return a better

result. Since all reservations have the same start and end time, the residual bandwidth of

link l is the minimal residual bandwidth among all the time slots between the start and end

time based on T Bl , l ∈ E, which is a bottleneck. The greedy algorithm takes as input a

graph G = (V,E) with bottleneck bandwidth in a given time slot on each link l, l ∈ E and

k fixed-slot bandwidth reservations R. This algorithm is refered as Greedy(G,R).

We first define several notations and operations to facilitate our explanation:

Dequeue(R): dequeue the first element in R.

r: a fixed-slot bandwidth reservation.

107

Algorithm 18 Greedy(G,R)

Sort the elements in R by their reserved bandwidths in increasing order;

while R 6= /0 do

r = Dequeue(R);
G = G−E(β r);
for all v ∈V do

b[v] = ∞;

prev(v) = NULL;

end for

b[vr
s] = 0;

S = /0;

Q =V [G];
while Q 6= /0 do

u = ExtractMin(Q);
S = S∪{u};

for all v ∈ Q,(u,v) ∈ E do

if b[v]> max(b[u],b(u,v)) then

b[v] = max(b[u],b(u,v));
prev(v) = u;

end if

end for

end while

if b[vr
d] = ∞ then

no path can be found to satisfy r;

else

Construct the path from vr
s to vr

d , and reserve the bandwidth β r on links along the

path for r;

end if

end while

β r,vr
s,v

r
d : the specified bandwidth, source vertex, destination vertex of r, respectively.

E(β r): a subset of E, consisting of links whose residual bandwidth is less than β r.

G−E(β r) : the operation of removing the links in E(β r) from G.

b[v]: the maximum bandwidth of the component links on the path from vs to v.

S: a set of vertices whose final narrowest paths from the source have already been deter-

mined.

108

Q: a min-priority queue of vertices, keyed by their bandwidth values.

ExtractMin(Q): the operation of extracting the vertex with minimal bandwidth in Q.

The pseudo-code for Greedy(G,R) is shown in Algorithm 18, which sorts all tasks by

their requested bandwidths in increasing order, and schedules them in the same order. For

each task with a specified bandwidth β , the algorithm first removes the links whose resid-

ual bandwidths are less than β since these links do not contribute to the current task and

subsequent tasks. It then computes the narrowest path in the residual graph by extending

the Dijkstra’s algorithm. Here, the narrowest path is defined as the path whose maximum

residual bandwidth of all component links on the path from the source vertex to the desti-

nation vertex is minimized. Since the computational complexity of the extended Dijkstra’s

algorithm is O(|E| · lg|V |) and there are k tasks, the total runtime of the greedy algorithm

is O(k · |E| · lg|V |).

Minimal Bandwidth and Distance Product Algorithm (MBDPA)

The scheduling order of the tasks largely determines the efficiency of a scheduling algo-

rithm. MBDPA considers the product of bandwidth and distance from source to destination

as the amount of network resources needed for each task. Here, the distance is counted as

the number of hops. The input of MBDPA is the same as the greedy algorithm, and we

refer to this algorithm as MBDPA(G,R).

Again, we define several notations and operations to facilitate our explanation:

d(vr
s,v

r
d
): the number of hops from vr

s to vr
d .

αr: the product of the specified bandwidth β r and d(vr
s,v

r
d
) for a request r.

109

ExtractMin(R): the operation of extracting the fixed-slot reservation with minimal product

α in R.

Algorithm 19 MBDPA(G,R)

while R 6= /0 do

for all r ∈ R do

G′ = G−E(β r);
compute d(vr

s,v
r
d
) in G′ by breadth-first search, d(vr

s,v
r
d
) = 0 if no path is found;

αr = β r ·d(vr
s,v

r
d
);

end for

r = ExtractMin(R);
for all v ∈V do

b[v] = ∞;

prev(v) = NULL;

end for

b[vr
s] = β r;

for (i = 1; i ≤ d(vr
s,v

r
d
); i++) do

for all (u,v) ∈ E do

if b[v]> max(b[u],b(u,v)) and b(u,v) ≥ β r then

b[v] = max(b[u],b(u,v));
prev(v) = u;

end if

end for

end for

if b[vr
d] = ∞ then

no path can be found to satisfy r;

else

Construct the path from vr
s to vr

d , and reserve the bandwidth β r on links along the

path for r;

end if

end while

The pseudo-code for MBDPA(G,R) is shown in Algorithm 19. For each fixed-slot

reservation r, the algorithm first runs breadth-first search to determine the distance d(vr
s,v

r
d
)

from vr
s to vr

d in G′, which is computed by removing the links with residual bandwidths less

than β r. Here, d(vr
s,v

r
d
) is computed as the number of hops along the found path, and the

bandwidth of the path is guaranteed to be at least β r. Each reservation is then keyed by the

110

product of its specified bandwidth and computed distance. The reservation with minimal

product is extracted for bandwidth scheduling. The narrowest path with bandwidth at least

β r is computed by an extended Bellman-Ford algorithm, which iterates for d(vr
s,v

r
d
) times.

The product of each of the remaining tasks is recomputed in each outmost while loop

because the network G is updated as bandwidth reservation is recorded at the end of each

loop. The runtime of MBDPA in worst case is O(k · |E| · (k+ |E|)).

7.3 Performance Evaluation

We first present the simulation-based performance comparison between Greedy and MB-

DPA under various network sizes and different numbers of accumulated tasks, and then

conduct more simulations to investigate the performance benefits of periodic scheduling in

comparison with instant scheduling in both MDTA and MFBR problems.

7.3.1 Comparison of Greedy and MBDPA

We conduct performance evaluation of Greedy and MBDPA heuristic algorithms for MFBR

problem using various simulated networks and bandwidth reservation requests. Each sim-

ulated network has an arbitrary network topology with a given number of nodes and links.

The residual bandwidths of the links are randomly selected within a certain range. A num-

ber of fixed-slot reservations are generated, whose source and destination vertices are ran-

domly selected and bandwidths are randomly specified within a certain range.

111

Table 7.1: Performance comparison between Greedy (G) and MBDPA (M) algorithms.

of nodes, 10 tasks 20 tasks 50 tasks 100 tasks 200 tasks 300 tasks 400 tasks

of links G M G M G M G M G M G M G M

10, 40 10 10 19 20 35 46 44 58 57 77 61 84 64 89

20, 80 10 10 20 20 42 45 52 66 64 88 69 105 76 119

50, 200 10 10 20 20 45 50 53 78 76 110 90 134 95 150

100, 400 10 10 20 20 47 50 83 93 97 135 106 177 120 186

200, 800 10 10 20 20 50 50 94 97 122 185 142 227 158 255

500, 2000 10 10 20 20 50 50 99 100 169 199 194 285 197 349

Given the same set of reservations and network configurations, we compare the num-

bers of satisfied reservations that are achieved by Greedy and MBDPA. Table 7.1 summa-

rizes the performance comparison of Greedy and MBDPA under various network topolo-

gies and different numbers of bandwidth reservations. The simulation results show that

MBDPA consistently outperforms Greedy in all the cases. Since larger networks have

more bandwidth resources and the reservations are randomly distributed over the network,

larger network sizes are expected to have more satisfied reservations, which is confirmed by

the observation in Table 7.1. For visual comparison purposes, the performance of the two

heuristic algorithms under a small network of 10 nodes and 40 links is plotted in Fig. 7.1,

where only a small portion of 400 reservations are satisfied. Their performance under a

large network of 500 nodes and 2000 links is also plotted in Fig. 7.2 , where MBDPA al-

gorithm satisfies the majority of the reservations while Greedy algorithm satisfies less than

half of the reservations.

112

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

Number of given tasks

N
u
m

b
e
r

o
f
s
a
ti
s
fi
e
d
 t
a
s
k
s

MBDPA
Greedy

Figure 7.1: Comparison of Greedy and MBDPA under a network with 10 nodes and 40

links.

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Number of given tasks

N
u

m
b

e
r

o
f

s
a

ti
s
fi
e

d
 t

a
s
k
s

MBDPA
Greedy

Figure 7.2: Comparison of Greedy and MBDPA under a network with 500 nodes and 2000

links.

113

7.3.2 Periodic Scheduling vs. Instant Scheduling

We compare the performances of periodic scheduling and instant scheduling in both MDTA

and MFBR problems to justify the motivation for developing periodic scheduling algo-

rithms. In instant scheduling, tasks are scheduled at their arrival times in the arriving order;

while in periodic scheduling, scheduling algorithms are launched periodically at a certain

time interval on a number of tasks accumulated in one period. In fact, instant scheduling is

a special case of periodic scheduling when the time interval is set to one time unit. There-

fore, the performance of periodic scheduling is at least as good as instant scheduling if an

appropriate scheduling interval is applied. Note that to a large degree, the performance

of periodic scheduling is determined by scheduling interval, which is confirmed by the

simulations described below.

For MDTA problem, based on a number of randomly generated tasks with sizes and

arrival times evenly distributed at a given range, instant and periodic scheduling algorithms

are run using different values of scheduling interval and their corresponding performance

curves are plotted in Fig. 7.3. The figure shows that the periodic scheduling performance

curve exhibits an obvious unimodal pattern. Therefore, the best value for scheduling in-

terval, can be empirically determined as the valley point to minimize the total transfer end

time. Periodic scheduling reduces to instant scheduling when scheduling interval is set to

the smallest time unit. In real network applications, the next optimal scheduling interval is

predicted as an exponential average of the previous scheduling intervals. Let tn be the true

value of scheduling interval and τn be the predicted optimal at the n-th step. The value for

114

the next optimal interval τn+1 can be predicted as:

τn+1 = αtn+(1−α)τn, (7.3.1)

where the parameter α , 0 ≤ α ≤ 1, controls the relative weight of the most recent and past

history in the prediction.

We conduct simulations to investigate how different properties of the given tasks affect

periodic scheduling performance, considering two most import task parameters: the num-

ber of given tasks and the variance of data sizes. In the simulations, we vary the number

of tasks and the variance of data sizes while fixing other parameters such as the num-

ber of paths and their bandwidths, and compute the performance improvement of periodic

scheduling using the optimal scheduling interval over instant scheduling in terms of total

transfer end time, defined as:

Timproved = Tinstant −Tperiodic. (7.3.2)

The simulation results are shown in Fig. 7.4, which illustrates that the total transfer end

time of instant scheduling is always greater or equal to that of periodic scheduling. The

performance superiority of periodic scheduling becomes more obvious when the values of

these two parameters increase, which is due to the fact that at each time interval a larger

number of files with smaller sizes are scheduled first, hence reducing the total waiting time.

For MFBR, we investigate how the length of the scheduling time interval affects the

performance of periodic scheduling. The simulation results produced by MBDPA algo-

rithm on both periodic and instant scheduling are shown in Fig. 7.5, under the network

size of 100 nodes and 400 links, with 300 randomly generated data transfer tasks. The

arrival times of these tasks are evenly distributed at time range of [0,100], and the start

115

1 2 3 4 5 6 7 8 9 10
2.82

2.83

2.84

2.85

2.86

2.87

2.88
x 10

4

Time interval

T
o

ta
l
tr

a
n

s
fe

r
e

n
d

 t
im

e

Instant
Periodic

Figure 7.3: Comparison of periodic scheduling and instant scheduling in MDTA problem.

100

150

200

60
80

100
120

140
160

0

50

100

150

Number of given tasks

Variance of task sizes

Im
p

ro
v
e

m
e

n
t

in
 t

ra
n

s
fe

r
e

n
d

 t
im

e

Figure 7.4: Comparison of periodic scheduling and instant scheduling in MDTA problem

under different numbers of tasks and different variances of task sizes. Z axis denotes the

performance improvement of periodic scheduling over instant scheduling in terms of total

transfer end time.

116

time of these tasks are specified at 100. Fig. 7.5 illustrates that periodic scheduling always

achieves a larger number of satisfied tasks compared to instant scheduling, which is not

affected by the length of the scheduling time interval. Furthermore, the performance of

periodic scheduling improves when the scheduling time interval increases, which is due to

the fact that tasks requiring less network resources will be always scheduled first.

0 20 40 60 80 100
120

130

140

150

160

170

180

190

Time interval

N
u

m
b

e
r

o
f

s
a

ti
s
fi
e

d
 t

a
s
k
s

Instant
Periodic

Figure 7.5: Comparison of periodic scheduling and instant scheduling in MFBR problem.

117

Chapter 8

Conclusion

Within a generalized control plane framework that supports advance bandwidth reserva-

tions in high-speed dedicated networks, we constructed realistic network models and stud-

ied a comprehensive set of advance bandwidth scheduling problems, including instant

scheduling and periodical scheduling, centralized scheduling and distributed scheduling,

and scheduling in LCC-overlays.

We conducted an in-depth investigation into these advance bandwidth scheduling prob-

lems through rigorous complexity analysis and algorithm design. To the best of our knowl-

edge, we are the first to formulate and study these advance bandwidth scheduling problems.

We presented simulation-based performance comparisons between the proposed heuristics

with optimal and greedy strategies in a large set of simulated networks.

It is of our future interest to improve the performance of our scheduling algorithms in

a more dynamic network environment. For example, once a network condition change is

detected, we may re-schedule the reserved bandwidth resource before the start time of the

data transfer previously scheduled for an advance bandwidth reservation request.

118

Bibliography

[1] Terascale Supernova Initiative (TSI). http://www.phy.ornl.gov/tsi.

[2] Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chem-

istry. http://scidac.psc.edu.

[3] National Leadership Computing Facility (NLCF). http://www.ccs.ornl.gov/nlcf.

[4] UCLP: User Controlled LightPath Provisioning. http://www.uclp.ca.

[5] DRAGON: Dynamic Resource Allocation via GMPLS Optical Networks.

http://dragon.maxgigapop.net.

[6] JGN II: Advanced Network Testbed for Research and Development.

http://www.jgn.nict.go.jp.

[7] Geant2. http://www.geant2.net.

[8] OSCARS: On-demand Secure Circuits and Advance Reservation System.

http://www.es.net/oscars.

[9] Internet2 Interoperable On-Demand Network (ION) Service.

http://www.internet2.edu/ion.

[10] GENI: Global Environment for Network Innivations. http://www.geni.net.

[11] BBCP. http://www.slac.stanford.edu/∼abh/bbcp.

[12] Tsunami. http://newsinfo.iu.edu/news/page/normal/588.html.

[13] Enlightened computing: An architecture for co-allocating network, compute, and

other grid resources for high-end applications. In Proc. of IEEE Honet, Dubai, UAE,

Nov. 2007.

[14] A. Banerjee, W. Feng, B. Mukherjee, and D. Ghosal. RAPID: An end-system

aware protocol for intelligent data-transfer over lambda-grids. In Proc. of the 20th

IEEE/ACM Int. Parallel and Distributed Processing Symp., Rhodes Island, Greece,

Apr. 25-29 2006.

[15] Z. Cao, Z. Wang, and E. Zegura. Performance of hashing-based schemes for internet

load balancing. volume 1, pages 332–341, 2000.

119

[16] C. Cetinkaya and E.W. Knightly. Opportunistic traffic scheduling over multiple net-

work paths. volume 3, pages 1928–1937, Mar. 2004.

[17] CHEETAH: Circuit-switched High-speed End-to-End Transport ArcHitecture,

http://www.ece.virginia.edu/cheetah.

[18] R. Cohen, N. Fazlollahi, and D. Starobinski. Graded channel reservation with path

switching in ultra high capacity networks. In Proc. of Broadnets, San Jose, CA, 2006.

[19] R. Cohen, N. Fazlollahi, and D. Starobinski. Path switching and grading algorithms

for advance channel reservation architectures. IEEE/ACM Transactions on Network-

ing, 17(5):1684–1695, 2009.

[20] B. EcKart, X. He, and Q. Wu. Performance adaptive UDP for high-speed bulk data

transfer on dedicated links. In Proc. of the 22nd IEEE Int. Parallel and Distributed

Processing Symp., Miami, Florida, Apr. 14-18 2008.

[21] S. Floyd. HighSpeed TCP for large congestion windows. Internet Draft, Feb. 2003.

[22] S. Ganguly, A. Sen, G. Xue, B. Hao, and B.H. Shen. Optimal routing for fast transfer

of bulk data files in time-varying networks. In Proc. of IEEE Int. Conf. on Communi-

cations, 2004.

[23] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-completeness. W.H. Freeman and Company, San Francisco, 1979.

[24] S. Gorinsky and N.S.V. Rao. Dedicated channels as an optimal network support for

effective transfer of massive data. In INFOCOM 2006 Workshop on High-Speed Net-

works, 2006.

[25] W.C. Grimmell and N.S.V. Rao. On source-based route computation for quickest

paths under dynamic bandwidth constraints. Int. J. on Foundations of Computer Sci-

ence, 14(3):503–523, 2003.

[26] Y. Gu and R.L. Grossman. SABUL: A transport protocol for grid computing. 1:377–

386, 2004. Journal of Grid Computing.

[27] R.A. Guerin and A. Orda. Networks with advance reservations: the routing perspec-

tive. In Proc. of the 19th IEEE INFOCOM, 2000.

[28] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, and W. Johnston. Intra and

interdomain circuit provisioning using the oscars reservation system. In Proc. of the

BROADNETS, pages 1–8, San Jose, CA, Oct. 1-5 2006.

[29] Y. Lin and Q. Wu. On design of bandwidth scheduling algorithms for multiple data

transfers in dedicated networks. In Proc. of the 4th ACM/IEEE Symp. on Arch. for

Net. and Comm. Sys., pages 151–160, San Jose, CA, USA, Nov. 6-7 2008.

120

[30] Y. Lin and Q. Wu. Path computation with variable bandwidth for bulk data transfer

in high-performance networks. In Proceedings of INFOCOM HSN Workshop, Rio de

Janeiro, Brazil, April 24 2009.

[31] Y. Lin, Q. Wu, N.S.V. Rao, and M. Zhu. On design of scheduling algorithms for

advance bandwidth reservation in dedicated networks. In The 2008 INFOCOM High-

Speed Networks Workshop, Phoenix, Arizona, Apr. 13 2008.

[32] M.H. Phùng, K.C. Chua, G. Mohan, M. Motani, T.C. Wong, and P.Y. Kong. On

ordered scheduling for optical burst switching. Computer Networks, 48(6):891–909,

2005.

[33] N. S.V. Rao, J. Gao, and L. O. Chua. Complex Dynamics in Communication Networks,

chapter On dynamics of transport protocols in wide-area internet connections. 2004.

[34] N.S.V. Rao, W.R. Wing, , S.M. Carter, and Q. Wu. Ultrascience net: Network testbed

for large-scale science applications. IEEE Communications Magazine, 43(11):s12–

s17, 2005. An expanded version available at www.csm.ornl.gov/ultranet.

[35] N.S.V. Rao, Q. Wu, S.M. Carter, W.R. Wing, D. Ghosal A. Banerjee, and B. Mukher-

jee. Control plane for advance bandwidth scheduling in ultra high-speed networks. In

INFOCOM 2006 Workshop on Terabits Networks, 2006.

[36] S. Sahni, N.S.V. Rao, S. Ranka, Y. Li, E. Jung, and N. Kamath. Bandwidth scheduling

and path computation algorithms for connection-oriented networks. In Proc. of Int.

Conf. on Networking, 2007.

[37] B.H. Shen, B. Hao, and A. Sen. On multipath routing using widest pair of disjoint

paths. In Proc. of Workshop on High Performance Switching and Routing, pages

134–140, 2004.

[38] L. Shen, X. Yang, A. Todimala, and B. Ramamurthy. A two-phase approach for

dynamic lightpath scheduling in wdm optical networks. In Proc. of IEEE Int. Conf.

on Comm., pages 2412–2417, Glasgow, Jun. 24-28 2007.

[39] R. Stewart and Q. Xie. Stream control transmission protocol.

www.ietf.org/rfc/rfc2960.txt, Oct. 2000. IETF RFC 2960.

[40] M. Veeraraghavan, H. Lee, E.K.P. Chong, and H. Li. A varying-bandwidth list

scheduling heuristic for file transfers. In Proc. of IEEE Int. Conf. on Communica-

tions, 2004.

[41] Q. Wu and Y. Lin. Distributed bandwidth scheduling for advance reservation in high-

performance networks. In Proc. of 7th Int. ICST Conf. on Heterogeneous Networking

for Quality, Reliability, Security and Robustness (QShine), Houston, Texas, Nov. 17-

19 2010.

121

[42] Q. Wu and N.S.V. Rao. A class of reliable UDP-based transport protocols based on

stochastic approximation. In Proc. of the 24th IEEE INFOCOM, Miami, Florida, Mar.

13-17 2005.

[43] Q. Wu and N.S.V. Rao. Protocol for high-speed data transport over dedicated chan-

nels. In Proc. of the 3rd Int. Workshop on Protocols for Fast Long-Distance Networks,

pages 155–162, Feb. 3-4 2005.

[44] K. Xi, H.J. Chao, and C. Guo. Recovery from shared risk link group failures using ip

fast reroute. In Proc. of 19th Int. Conf. on Comp. Comm. and Net., pages 1–7, Zurich,

Switzerland, Aug. 2-5 2010.

[45] C. Xie, H. Alazemi, and N. Ghani. Routing and scheduling in distributed advance

reservation networks. In Proc. of IEEE Global Telecommunications Conference,

pages 1–6, Miami, FL, Dec. 6-10 2010.

[46] Y. Xiong, M. Vandenhoute, and H.C. Cankaya. Control architecture in optical

burst-switched wdm networks. IEEE J. on Selected Areas in Communications,

18(10):1838–1851, Oct. 2000.

[47] Z.L. Zhang, Z. Duan, and Y.T. Hou. Decoupling QoS control from core routers: A

novel bandwidth broker architecture for scalable support of guaranteed services. In

Proc. of ACM SIGCOMM, 2000.

[48] X. Zheng, A.P. Mudambi, and M. Veeraraghavan. FRTP: Fixed rate transport protocol

– a modified version of SABUL for end-to-end circuits. In Proc. of Broadnets, 2004.

[49] Y. Zhu and B. Li. Overlay network with linear capacity constraints. IEEE Trans. on

Parallel and Distributed Systems, 19:159–173, Feb. 2008.

122

	Advance Bandwidth Scheduling in High-speed Dedicated Networks
	Recommended Citation

	Dissertation_Lin.dvi

