
University of Memphis University of Memphis

University of Memphis Digital Commons University of Memphis Digital Commons

Electronic Theses and Dissertations

11-27-2013

Hierarchical Feature Learning Hierarchical Feature Learning

Jayanta Kumar Dutta

Follow this and additional works at: https://digitalcommons.memphis.edu/etd

Recommended Citation Recommended Citation
Dutta, Jayanta Kumar, "Hierarchical Feature Learning" (2013). Electronic Theses and Dissertations. 839.
https://digitalcommons.memphis.edu/etd/839

This Thesis is brought to you for free and open access by University of Memphis Digital Commons. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of University of
Memphis Digital Commons. For more information, please contact khggerty@memphis.edu.

. . .

•

•

•

Column

Node

Fig. 2.2: Nodes and columns in our architecture. A node is a lamina of neurons (shown
here in one-dimension) each of which responds to a unique feature. A column consists of
neurons all of which respond to the same feature. This is conceptually similar to the
ice-cube model of primary visual cortex (Hubel and Wiesel, 1977). Such a cube of nodes
and columns forms a simple sublayer in our architecture as shown in Fig. 2.3.

11

Input

Input layer, I

(or L0)

Weights, W
(S,C)

Weights, W
(I,S)

Complex sublayer, C

Simple sublayer, S

.

A node in a

simple sublayer

A node in a

complex sublayer

.

.

Layer,

L1

(a)

Intra-node lateral connections

Sublayer,

S or C

(b)

Fig. 2.3: One layer in our architecture. (a) Feedforward connections from a simple to a
complex sublayer node. Circles denote neurons. W (I,S) are learned to encode spatial sets
or features in simple sublayer S. W (S,C) are learned to encode temporal sets or
transformations in complex sublayer C. Feedback connections are not shown. (b) Lateral
connections in S within a node. Intra-node lateral connections encode temporal
correlations. These lateral weights W (S,S) in conjunction with W (S,C) are modeled to
learn sequences.

12

spatiotemporal RF, it spikes.1 It functions as an integrate-and-fire neuron (Abbott, 1999)

and a suspicious coincidence detector (Földiák, 1990).

At each sampling instant, our model accepts spatial data as input through the first

layer, which is passed on to higher layers in the form of activations. The goal of

computations in each node is to explain or reconstruct the input. Over time, each neuron

in a node gets tuned to a unique feature; such a sparse set of features can reconstruct many

different inputs. Functionally, a node is an overcomplete set of filters, all of which are

applied to each patch of the input data. These filters might be spatial (e.g., edges in

different orientations) or spatiotemporal (e.g., vertical edge moving in a particular

direction) depending on the temporal RF size of the corresponding neurons. For learning

spatial features with no temporal component, the temporal RF size of the neurons may be

set to unity. Such neurons are referred to as simple neurons. Complex neurons learn

spatiotemporal features with a finite temporal RF size greater than unity and the same

spatial RF size as its lower layer simple neurons. As a result of learning multiple layers of

features, where each layer treats the activations of the lower layer neurons as data, strong

connections are formed from the first layer neurons to the top layer neurons through the

intermediate layers such that rapid categorization of the input signal may be achieved

(Serre et al., 2007a). The connections that are used more often are strengthened while the

rest are weakened.

In the most general case, the neurons in layer ℓ+ 1 in our architecture have larger

RFs, both in space and time, than those in layer ℓ. In accordance with the structure of the

visual pathway, researchers have opted to design multilayered neural architectures with

alternating layers of simple and complex cell-like neurons where the simple neurons

respond to spatial features (e.g., edges in different orientations) while the complex

neurons induce scale and translation invariance to those features. Examples of such

models include the Neocognitron, convolutional neural networks, HMAX and HTM. In

1In this article, we account for every spike of a neuron as opposed to the spiking/firing rate or any
function of that (e.g., mean) or their distribution of a single or population of neurons.

13

these models, connections from a simple to complex layer are hardwired for pooling and

only the connections to the simple layer are learned. In our model, all connections are

learned from the data and thus can afford the flexibility to learn spatiotemporal features of

sizes driven by the data. Further, our architecture may be used with minimal modification

to learn spatial features (e.g., from images), temporal features (e.g., from audio), or

spatiotemporal features (e.g., from videos).

2.3 Connections: Feedforward, Lateral and Feedback

Connections across layers are of two types – feedforward and feedback.

Feedforward connections help higher layer neurons to abstract more stable spatiotemporal

patterns by pooling from a number of lower layer neurons. This strategy has been used in

many multilayered networks, such as HMAX (Riesenhuber and Poggio, 1999; Serre,

2006; Serre et al., 2007a; Serre et al., 2007b), HTM (George and Hawkins, 2005; George,

2008; Hawkins et al., 2011), convolutional neural networks (Farabet et al., 2011; LeCun

and Bengio, 1995), and deep belief networks (Hinton et al., 2006; Hinton and

Salakhutdinov, 2006; Hinton, 2007). The pooling mechanism has been shown to capture

invariances to arbitrary transformations implicit in the data (Dutta and Banerjee, 2013).

Top-down feedback connections predict global spatiotemporal patterns, that is, over a

larger space and time. The strength of connections encode the recurring local correlations

(or lack thereof) in neural spikes.

Lateral connections within a layer are of two types: those that connect neurons

within a node (intra-node) encode temporal correlations while those that connect neurons

across neighboring nodes (inter-node) encode spatial correlations. Spatial correlations

have to be stored in inter-node lateral connections as each node looks at a particular region

in space. Temporal correlations have to be stored in intra-node lateral connections as

activations of neurons within a node over time depict how a feature changes in a particular

region in space over time.

14

In our mdoel, a simple neuron strongly connects to a set of complex neurons in the

lower layer, encoding a set of features in space. The relative spatial locations of these

features, arranged in a 2D grid, are encoded as spatial correlations by inter-node lateral

connections in the complex layer. These connections are undirected. A complex neuron

strongly connects to a set of simple neurons in the lower layer, encoding a set of features

in time. The sequence of occurrence of these features are encoded as temporal

correlations by intra-node lateral connections in the simple layer. The direction of such a

connection signifies the direction of transition in time. Thus, lateral connections provide

spatial and temporal structure to the sets encoded by feedforward connections. Without

these lateral connections, detection of features in the input would be possible but not their

relative locations in space or time.

Notation. N (ℓ)(i) is the set of neurons in layer ℓ that connect to the ith neuron in

some layer. This is also referred to as the neighborhood in layer ℓ of the ith neuron.

W
(k,ℓ)
ji (t) is the weight or strength of connection from the jth neuron in layer k to the ith

neuron in layer ℓ at time t. A(ℓ)
i (t) and S(ℓ)

i (t) are respectively the activation and state of

the ith neuron in layer ℓ at time t. Finally, τ ℓi is the temporal RF size of the ith neuron in

layer ℓ. MT denotes transpose of matrix M.

In the next two chapters, we will describe the learning procedure for simple and

complex neurons. We will also show the use of different types of connections (e.g.,

feedforward, lateral and feedback) in learning those simple and complex neurons.

15

Chapter 3

Hierarchical Feature Learning from Sensory Data

3.1 Feature Learning using Spherical Clustering

3.1.1 Objective Function

The model described in this section learns feature hierarchies from recurring

coincidences in the data in an unsupervised and online manner, minimizing the following

objective function on convergence:

ℓ(X ,W) =
1

2

n∑
i=1

∑
j∈N (i)

∥xj − wi∥2 (3.1)

where X = {x1, x2, ...xN} and W = {w1, w2, ...wn} are the set of d-dimensional data

points and features respectively, N (i) is the set of data points in the neighborhood of wi,

|
∪n

i=1N (i)| < N , |.| denotes the cardinality of a set. Each data point and feature is

normalized to have unit norm. Each layer in our model learns a set of non-orthogonal

features that soft-partitions a subset of the normalized input space; this subset, given by∪n
i=1N (i), does not contain outliers. Such a formulation may be construed as

soft-clustering on the surface of a hypersphere of unit radius (a.k.a. spherical clustering

(Dhillon and Modha, 2001)) where the outliers are not allowed to influence the cluster

centers.

3.1.2 Architecture

In this section, we will concentrate on learning feature hierarchies using the

feedforward connections and simple sublayers only.

3.1.3 Operation

At each sampling instant, our model accepts spatial data as input through the first

layer which is passed on to higher layers in the form of activations. The goal of

computations in each node is to selectively cluster the data into groups (Dutta and

Banerjee, 2013). Over time, each neuron in a node gets tuned to a unique feature which

16

represents a cluster center. Functionally, a node is a bag of filters all of which are applied

to each patch of the input data.

The output (or state) of a layer is the input to the next higher layer. The same

operation is executed in each node in any layer. Thus, the feedforward weights in this

hierarchical model are learned by recursive layer-by-layer spherical clustering.

3.1.4 Neuron

In our model, the activation of a neuron is given by

A
(l)
i (t) =

∑
j∈N (l−1)(i)

W
(l−1,l)
ji (t)× A

(l−1)
j (t) (3.2)

In matrix form, A(l) = A(l−1) ×W (l−1,l) where the neighborhood information is implicit.

Since each feature in W (l−1,l) and A(l−1) are normalized, A(l) is the normalized dot

product of the input with each feature. This allows a neuron to act as a suspicious

coincidence detector (Földiák, 1990), responding with high activation if the input pattern

matches the feature encoded in its receptive field.

For a given input, all neurons in a node receive activations. The maximally

activated neuron in a node is the “winner”. While we compute the winner using a max

operation, it is more biologically plausible to consider lateral connections within a node

using which neurons inhibit each other at a faster time scale eventually settling at some

stable state. Lateral inhibition has been used for similar purposes in many models, such

as, in (Einhäuser et al., 2002), in the form of V -cells in Neocognitron (Fukushima, 2003)

and in the LISSOM model (Sirosh and Miikkulainen, 1997).

The state of a neuron is binary and is given by

S
(l)
i (t) =

1, if A(l)

i (t) > A
(l)
j (t), ∀j ̸= i, and

A
(l)
i (t) > θ

(l)
i (t)

0, otherwise

(3.3)

The threshold θ is adaptive and unique for each neuron. Only the winner in a node is

17

assigned the state 1 if its threshold is crossed. This is how our model implements the

winner-take-all mechanism which allows only the neuron of highest activity to learn. We

say a neuron has fired if its state reaches unity.

Thus, a neuron integrates all inputs over its RF until it reaches its threshold when it

fires if it is the winner. As soon as it fires or if it fails to fire, it discharges and then starts

integrating again. The discharge from a neuron inhibits neighboring neurons in its own

layer. As in (Einhäuser et al., 2002), it may be assumed that this lateral inhibition is

proportional to a neuron’s total accumulated charge (or activation) and operates at a faster

time scale. The inhibition is required to ensure that neurons in a layer do not get tuned to

the same feature. The inhibition influences a neuron’s activation which in turn influences

its inhibition. This cycle ensues until a stable state is reached. In most practical cases, this

inhibition is observed to be strong enough to drive all neurons close to their baseline

activation. In our implementation, we assume this baseline to be zero which does not

affect our features qualitatively.

3.1.5 Learning: Updating Weights and Thresholds

Feedforward weights to neuron j in layer l with S(l)
j (t) = 1 are updated following

Hebbian rule.

W
(l−1,l)
ij (t+ 1) = (1− α)×W

(l−1,l)
ij (t) + α× S

(l−1)
i (t) (3.4)

where α is the learning rate that decreases with time for finer convergence, 0 < α < 1,

S(0) = A(0). This weight update rule is obtained by applying gradient descent on the

objective function in eq. 3.1 in an online setting. Feedforward weights leading to each

neuron are initialized to ones and normalized to have unit norm, which allows all neurons

in a layer to compete on an equal footing. A new neuron is not recruited unless the

incoming pattern is more similar to the initialized feature than to any of the learned

features. After each update, weights to each neuron are normalized to have unit norm.

Thus, feedforward connection from a presynaptic neuron (i) to a postsynaptic one (j) that

18

fire together are strengthened while the rest (to j) are weakened. The weakening of

connections is crucial for robustness as it helps remove infrequent coincident patterns

from memory which are probably noise.

The threshold is updated as follows:

θ
(l)
i (t+ 1) =

 A
(l)
i (t), if S(l)

i (t) = 1

(1− η)× θ
(l)
i (t), otherwise

(3.5)

where η is the threshold decay parameter, a constant, 0 < η < 1. Due to the threshold,

only a subset of stimuli can trigger learning. If η = 1, all stimuli are used in learning as in

traditional clustering algorithms. If η = 0, no stimulus can cross the threshold, hence

learning does not occur. Size of the set of effective stimuli reduces with reduction in the

value of η. The threshold decay mechanism ensures that the size of the effective subset

remains fixed throughout the learning process, thereby maintaining the plasticity of the

network. The winner-take-all mechanism along with the threshold favor neurons with

sparsely distributed activity.

In the proposed model, a neuron always passes on its activations to its neighboring

neurons in all layers irrespective of whether it fires or not. This is crucial for online

operation where learning and inferencing proceed simultaneously and not in distinct

phases. If a pattern has been learned and a part of it is shown, a partial pattern of

activations will stimulate the remaining neurons of the pattern to become active thereby

completing the whole pattern. However, the strength of connections will not be altered

unless enough of the pattern has been seen (as determined by θ) and the RFs of the

presynaptic neurons are the best match to the incoming pattern in their respective nodes to

fire the postsynaptic neuron in the higher layer.

3.1.6 Experimental Results

The proposed model in this section was deployed for learning feature hierarchies

from data in different modalities in an unsupervised and online manner with the learning

19

rule derived from the same objective function as in eq. 3.1. The feedforward weights were

learned layer by layer with α(t) = α(t− 1)/(1 + t/106), α(0) = 0.1. θ were initialized to

ones. Overlap between patches for adjacent nodes was 75% and 25% in the first and

second layers respectively. The top layer had only one node. The number of nodes in each

layer is a function of the % overlaps and the RF sizes of neurons.

Features for the second and third layers were reconstructed as follows. For a

neuron in the second layer, a neuron in each first layer node that most strongly connected

to it was chosen. The features represented by these neurons were weighed by the

connection strengths and spatially organized taking into consideration the % overlaps

among nodes. Once the second layer features were constructed, the same procedure was

carried out for each third layer neuron to construct their features. To reconstruct unknown

data, a winner neuron was computed in each node in the highest layer. A neuron in each

node in the lower layers was chosen based on strongest connection to the winner. The

chosen lowest layer features, each multiplied by the norm of the corresponding input data

patch and spatially organized based on the % overlaps among nodes, reconstructed the

input.

Images

Our model learned three layers of features from natural images (downloaded from

Google images). The images were converted to grayscale, and convolved with a Laplacian

of Gaussian filter to crudely highlight edges (performed by center-surround cells before

the signal reaches V1). The features learned in the first layer were edges/bars in different

orientations and phases, similar to RFs of simple cells in V1 (Hubel and Wiesel, 1962).

The features learned in the second layer were different combinations of these edges,

similar to RFs found in V2 (Hegde and Van Essen, 2000; Ito and Komatsu, 2004) (see Fig.

3.5). Features learned in the third layer were unstable and did not show any coherent

pattern. Our model also learned three layers of features from 60,000 images of ten

handwritten numerals {0, 1, ...9} from the MNIST dataset (LeCun et al., 1998). As shown

20

in Fig. 3.2, parts of numerals were learned in first layer, larger parts in the second layer,

and whole numerals in the third layer. The grayscale intensity denotes the strength of a

feature. η was chosen as 10−4 for natural images and 10−1 for MNIST as there are many

more outliers in the former data set compared to the latter. Thus, the same model could

learn three layers of features from the MNIST data but only two layers from natural

images due to the absence of recurring coincidences among second layer features in the

latter case.

Fig. 3.1: Features of size 10× 10 and 20× 20 were learned from natural images in first
(left) and second layers (right). 49 out of 150 and 70 out of 100 features from first and
second layers are shown.

Videos

Spatiotemporal video features were learned in our model from 3D voxels where

time is the third dimension. Such features have often been learned from voxels for

computer vision and machine learning applications, particularly for action recognition

(see for example, (Ji et al., 2010; Le et al., 2011)). When our model was exposed to videos

of ten actions (e.g., walking, waving) performed by nine subjects from the Weizmann

dataset (Gorelick et al., 2007) with η = 10−2, the first layer neurons with RF size

10× 10× 5 learned edges in different orientations and moving in different directions.

That is, they developed orientation- and direction-selective RFs as in complex cells in V1

(Hubel and Wiesel, 1962) (see Fig. 3.3). Consequently, they respond to static edges/bars

21

Fig. 3.2: A hierarchy of features were learned from handwritten numerals in MNIST
dataset in first, second and third layers with receptive field sizes 10× 10, 16× 16 and
28× 28 respectively. 400, 150 and 50 features from first (top left), second (top right) and
third (bottom) layers are shown.

in a particular orientation in different locations within their RFs, and therefore, have

learned position-invariant features.

Clustering

Our learning algorithm may be construed as a special case of clustering. We

compared its clustering performance to that of three algorithms with interesting

properties. First, the k-means is one of the most widely used clustering algorithms and its

performance will serve as a benchmark. Second is the algorithm proposed by Einhäuser et

al. (Einhäuser et al., 2002) for learning features from natural videos. It has two distinct

properties: division by past trace for achieving translation or viewpoint invariance,

proposed by Földiák (Földiák, 1990), and lateral inhibition for determining the winner.

Third is the topology adaptive self-organizing neural network or TASONN (Datta et al.,

2001) for skeletonization of data sets. It belongs to the class of algorithms known as

growing neural gas (Fritzke, 1995) which start with a very few neurons and strategically

22

Fig. 3.3: 30 out of 100 features learned in first layer from action videos (e.g., walking,
waving) are shown. Each row is a spatiotemporal feature with spatial RF size 10× 10,
temporal RF size 5, and direction from left to right.

add neurons and connections with learning until a stopping criterion is met. Hence, the

final result is immune to bad initializations.

Five datasets from the UCI machine learning repository (Blake and Merz, 1998)

were used in our experiments (see Table 3.1). Table 3.2 shows the performance (mean µ ±

std. dev. σ) of four unsupervised and two supervised algorithms over 1000 trials on each

of the datasets. The advantage of TASONN and our model over k-means for initialization

is revealed by the σ. On average over all datasets, the classification accuracies of

Einhäuser et al.’s model and TASONN were 45%, k-means and our model were 64%, and

the two supervised algorithms were 74%. For measuring similarity, k-means and

TASONN use Euclidean distance while Einhäuser et al.’s and our models use dot product.

Among the four unsupervised algorithms, our model performed with highest accuracy and

lowest σ. Fig. 3.4 shows the variation in performance of our model for different values of

η for each dataset. The best performance is achieved at η = 10−2; however, for natural

data with many more outliers, η = 10−4 performs better.

23

−12 −10 −8 −6 −4 −2 0

40

50

60

70

80

90

Threshold decay parameter, η (in log scale)
%

 a
cc

ur
ac

y

Iris
Wine
Glass
Vehicle
Segment
Mean

Fig. 3.4: The influence of η on the performance of our model on five UCI datasets is
shown. The errorbars indicate standard deviations.

3.2 Feature Learning using Sparse Coding

3.2.1 Objective Function

Unlike spherical clustering, sparse coding uses more than one neuron to represent

the input. If X = {x1, x2, ...xN} and W = {w1, w2, ...wn} are the set of d-dimensional

data points and features respectively, A = {a1, a2, ...aN} are the set of n-dimensional

coefficient vectors, then a data point x can be represented as a linear combination of the

features, satisfying ∥x−Wa∥p ≤ ϵ. For p ≥ 1, we can define the lp norm of a k

dimensional vector y as ∥y∥p = (
∑k

i=1 |y[i]|p)
1
p , where y[i] denotes the i-th coordinate of

y. In this work we will use p = 2 for the representation error.

But if d <n and W is a full-rank martix, there are infinite number of solutions

possible for this representation problem. In that case a sparsity function can be used as a

Table 3.1: Benchmark UCI datasets

Name of No. of No. of No. of
dataset points dimensions classes

Iris 150 4 3
Wine 178 13 3
Glass 214 9 6

Vehicle 846 18 4
Segment 2310 19 7

24

Table 3.2: Performance of algorithms on the UCI datasets

Name Unsupervised (µ± σ) Supervised (µ)
of k-means Einhäuser et al.’s Our model TASONN SVM Mean

dataset (Matlab) model (η = 0.01) model (Matlab) Classifier
Iris 82.7± 12.4 47.1± 4.3 71.4± 2.9 90.3± 1.3 76.7 93.3

Wine 95.0± 4.0 59.4± 1.7 89.6± 1.9 42.8± 2.6 99.4 97.2
Glass 43.2± 2.8 46.6± 2.3 48.7± 1.6 45.7± 4.0 59.8 51.4

Vehicle 37.0± 0.7 30.1± 0.6 39.1± 2.0 27.7± 1.3 73.9 45.3
Segment 60.2± 6.8 37.0± 1.8 67.2± 2.4 18.7± 0.7 60.3 84.2

regularization term which can be viewed as a selection of relevant or important features.

The overall goal is to minimize the following objective function on convergence:

ℓ(X ,W) =
1

2N

N∑
i=1

∥xi −Wai∥22 + ϕ(ai) (3.6)

where ϕ(ai) is the sparsity function. Generally we define the ∥l∥0 norm as the sparsity

measure which counts the number of nonzero elements in a vector:

∥y∥0 ≡ #{i : y[i] ̸= 0}, where n is a positive integer. Sometimes ∥l∥1 norm is also used

to make the optimization problem convex.

3.2.2 Neuron

The task of the neruons in each layer is to explain the input where explanation is

construed as reconstruction of the input A(l−1) using the learned features and their

activations A(l), by minimizing the following loss function:

Erecon(A(l−1)|W (l−1,l)) ≡ 1

2
∥A(l−1) −W (l−1,l) × A(l)∥22 (3.7)

subject to ∥A(l)∥0 ≤ n

where ∥A(l)∥0 ≡ #{i : A(l)
i ̸= 0}, n is a positive integer, and each column of W (l−1,l) is a

feature that has been normalized to have unit norm. The condition on A(l) constrains the

maximum number of features used in the reconstruction, thereby inducing sparsity.

25

If n is greater than or equal to the number of available features (i.e., number of

columns in W (l−1,l)), the simple neurons’ activations may be computed using ordinary

least squares in closed form as: A(l) = (W (l−1,l)T ×W (l−1,l))−1 ×W (l−1,l)T × A(l−1). If n

is less than the number of features, reconstruction in the model is achieved by an iterative

process. This process may be implemented as orthogonal matching pursuit (OMP) (Pati

et al., 1993) which is a greedy forward selection algorithm that starts with an empty list

and includes at each iteration the feature most correlated with the current residual.

Initially, the input (i.e., prediction error) is the residual. At each step, the feature for the

maximally activated (absolute values of activations are considered) or winner simple

neuron is included in the list, and all the activations are updated by computing the

orthogonal projection of the input onto the linear subspace spanned by the features

selected so far. The residual is updated as the difference between the input and the sum of

selected features times their activations. This procedure continues until n features have

been used. If n = 1, OMP reduces to computation of activation for spherical clustering

(Dhillon and Modha, 2001) which is computationally more efficient than iterative

algorithms, such as OMP with n > 1, and can be used to learn hierarchy of features from

spatiotemporal data (Banerjee and Dutta, 2013a; Banerjee and Dutta, 2013b; Dutta and

Banerjee, 2013) but has limited explanatory power.

3.2.3 Learning

Learning Lateral Connections: Consider an interconnected set of neurons, need

not be fully connected but in the same layer. If the connection weights encode the

correlations of neuronal activations, i.e.

Wij(t) = Ai(t)× Aj(t), (3.8)

the activation of the ith neuron may be spatially predicted from the activations of its

neighboring neurons as:

26

Âi(t) =
1

κ

∑
j∈N (i),j ̸=i

Wji(t)× Aj(t) (3.9)

where κ =
∑

j∈N (i),j ̸=iA
2
j is the normalization factor. This is a form of divisive

normalization widely used for various purposes, such as enhancing sensitivity and

discrimination, eliminating nonlinear statistical dependencies, etc. (Carandini and Heeger,

2012) in different modalities (Heeger, 1992; Olsen et al., 2010; Simoncelli and Schwartz,

2000; Wainwright et al., 2002). If the activations Aj have zero mean and unit variance,

κ = 1. Otherwise, if κ is dropped, the structure in the input is still retained but with a

different amplitude.

When a few neurons are activated by the partial presence of a learned input, the

above model can predict remaining part of the input, thereby functioning as an associative

memory. Beyond some minimum neighborhood size, smaller the neighborhood, stronger

the memory i.e., more patterns can be stored accurately. If each neuron in layer ℓ encodes

a feature in W (ℓ−1,ℓ), estimating the activations of these neurons from the neighboring

neurons in its own layer provides a means for estimating the activations of neurons in the

lower layers. To keep notations simple, this may be expressed in matrix form as:

Â(ℓ−1) =W (ℓ−1,ℓ) × Â(ℓ) =W (ℓ−1,ℓ) ×W (ℓ,ℓ) × A(ℓ) (3.10)

This expression does not make explicit the neighborhood information which plays a

crucial role. A model that includes all neurons in a layer in the neighborhood will form a

particularly inefficient storage architecture. We will continue with the matrix notation to

keep expressions simple assuming the neighborhood to be implicit.

It is beneficial to keep a memory trace of the past as opposed to altering the

connection weights abruptly with each input. This may be achieved by using a forgetting

term β as:

27

Wij(t+ 1) = β ×Wij(t) + Ai(t)× Aj(t) (3.11)

where 0 < β < 1; β may be initialized close to zero and increased exponentially with the

number of observations.

Learning Feedback Connections: In our model, the top-down or feedback weights

W (ℓ,ℓ−1) encode the correlation of neuronal activations between neurons in layers ℓ and

ℓ− 1. Thus, following equation 3.11,

W
(ℓ,ℓ−1)
ij (t+ 1) = β ×W

(ℓ,ℓ−1)
ij (t) + A

(ℓ)
i (t)× A

(ℓ−1)
j (t) (3.12)

Learning Feedforward Connections: The feedforward connections encode

features in our neural architecture. We use block coordinate descent (BCD) with warm

restart to learn these connections. Computational benefits of BCD, such as local

computation, parameter free learning and faster convergence, over other gradient

descent-like algorithms are well-known (Mairal et al., 2010). For the derivation of

parameter update equations, refer to appendix in (Kong and Wang, 2012). Here we show

how these equations may be implemented by exploiting the lateral and feedback

connections in our model to learn the feedforward connections.

Using BCD, the ith feature is updated as:

△W (ℓ−1,ℓ)
i = γ × ((W (ℓ,ℓ−1)T)i −W (ℓ−1,ℓ) ×W

(ℓ,ℓ)
i) (3.13)

where γ is a normalization factor, the subscript i refers to the ith column of the matrix.

Each column (i.e. feature) of W (ℓ−1,ℓ) is normalized to have unit norm after each update.

As shown in (Mairal et al., 2010; Kong and Wang, 2012), this learning rule minimizes the

well-known loss function in equation 1.1 for an optimal dictionary of features keeping the

activations fixed. Convergence properties of this learning rule are explicated in (Bertsekas,

1999; Bottou and Bousquet, 2008; Mairal et al., 2010).

28

Given the activation A(ℓ), W (ℓ−1,ℓ) ×W (ℓ,ℓ) × A(ℓ) estimates the activations Â(ℓ−1)

(ref. equation 3.10). Since W (ℓ,ℓ−1) encodes correlations between activations of layers ℓ

and ℓ− 1 (ref. equation 3.12), (W (ℓ,ℓ−1))T × A(ℓ) also estimates Â(ℓ−1). Thus, features

encoded in the feedforward weights are learned one by one to account for the difference of

estimations from two sources. By keeping the weight update rule independent of

activations, BCD explains interlayer correlations by the features and lateral correlations

thereby learning from relations in the input (Banerjee, 2013).

3.2.4 Experimental Results

The proposed model in this section was also deployed for learning feature

hierarchies from images in an unsupervised and online manner. The layers were learned

one by one. Overlap between spatial patches for adjacent nodes was 50% in the first layer.

The top layer had only one node. The number of nodes in each layer is a function of the %

overlaps and the RF sizes of neurons in the different layers. The second layer features are

reconstructed as follows. For a neuron in the second layer, a sparse set of neurons in each

first layer node that strongly (excitatory or inhibitory) connects to it is chosen. The

features represented by these neurons are weighed by the connection strengths and

spatially organized taking into consideration the % overlaps.

Our model learned two layers of features from thousands of natural images

(downloaded from Google images). The images were converted to grayscale, and

convolved with a Laplacian of Gaussian filter to crudely detect edges (performed by

center-surround ganglion cells before the signal reaches V1 (Hartline, 1940; Barlow,

1953; Kuffler, 1953)). The features learned in the first layer were edges/bars in different

orientations and phases (see Fig. 3.5b), similar to RFs of simple cells in V1 (Hubel,

1995). The features learned from the same data without any preprocessing, as shown in

Fig. 3.5, are more useful for image reconstruction.

The second layer was learned using the same RF size as the first layer, which used

the output of the first layer as input. After learning, the second layer weights became

29

(a) (b)

Fig. 3.5: Features of size 15× 15 learned from natural images in first layer without any
preprocessing (a) and after applying a Laplacian of Gaussian filter (b). A total of 256
features were learned in each case.

sparse. Each second layer unit was strongly connected to a small subset of first layer units

with positive or negative values and the other values were quite small. The second layer

bases are shown in Fig. 3.6. This result is similar to the model in (Lee et al., 2008) where

the second layer bases encoded co-linear first layer features as well as complex features,

such as intersections and angles. Several studies (Hegde and Van Essen, 2000; Ito and

Komatsu, 2004) have shown that cells in V2 respond to such complex features.

Our model also learned two layers of features from 60,000 images of ten

handwritten numerals {0, 1, ...9} from the MNIST dataset (LeCun et al., 1998). As shown

in Fig. 3.7, parts of numerals were learned in first layer while the neurons in second layer

learned to respond to at least one instance of all the ten numerals. In the features, black

color denotes inhibitory connection, white excitatory and grey neutral (close to zero).

During learning from data with no temporal continuity, we set the temporal RF size (τ) of

neurons to unity. These features can now be used for classification. Using our model, we

also reconstructed very noisy images. As shown in Fig. 3.8, the reconstructions from

30

