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ABSTRACT

Rashid, Gilmanur. PhD. The University of Memphis. August 2016. LVRT
capacity enhancement of DFIG based wind farms by controllerbased auxiliary devices.
Major Professor: Dr. Mohd. Hasan Ali.

Wind energy is one of the most prominent sources of renewableenergy. However,

subjected to the high penetration of wind energy into existing power grids, stability and

smooth operation of electric power system is at stake due to the vulnerability of the wind

farms to the grid faults. To address the situation, energy regulatory bodies and electricity

transmission system operators have imposed grid codes to ensure overall system stability

and steady operations. The most challenging grid code is thelow voltage ride through

(LVRT) which requires the wind farms to stay connected and support the grid during fault.

Based on this background, in order to enhance the LVRT capability of the doubly fed

induction generator (DFIG) based onshore wind farms, controller based auxiliary devices,

such as the bridge type fault current limiter (BFCL) and parallel resonance fault current

limiter (PRFCL) have been proposed in this dissertation. Fromthe Matlab/Simulink based

simulations performed on various test systems under fault conditions, it was found that the

BFCL and PRFCL are very effective devices in enhancing the LVRT capability of the

DFIG based wind farms. Moreover, both devices outperform the conventional series

dynamic braking resistor (SDBR) method. With a view to augmenting the LVRT

performance much more, nonlinear equation governed controller and fuzzy logic based

controller are designed and applied to the modified BFCL (MBFCL) and PRFCL,

respectively. From the simulation results, it was found that these nonlinear controllers

make the fault current limiters adaptive and responding to the power system dynamics and

thus provide much better performance in LVRT capacity augmentation. Furthermore,

maintaining the LVRT capability is also challenging for theDFIG based offshore wind

farms (OWFs). A DC chopper is a popular choice for the LVRT capacity enhancement of

the OWFs. A metaheuristic algorithm, such as a particle swarmoptimization (PSO)

technique is proposed to design a controller for the DC chopper resistor. Simulation
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results reveal that the PSO controller based DC chopper is more effective than the

conventional DC chopper for the LVRT capacity improvement of DFIG based OWFs.
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CHAPTER 1

INTRODUCTION

A significant connection between the socioeconomic growth and consumption of

electricity has been found by the researchers[1]. Economicand social development and

demand of electricity help each other to grow. Electricity is the most convenient form of

energy that can be conveniently generated, transmitted anddistributed. Availability of

electricity facilitates the usage and development of modern technologies that improve the

quality of human life. As a result, people lean more towards technology and obtain more

stuff that needs electricity to operate. This in turns necessitates more electricity

production. Fossil fuels, hydropower, and nuclear reactors are the widely used primary

energy sources. But they incur adverse environmental impacts, for example, the increase

of the carbon dioxide (CO2) emission into the atmosphere results in the greenhouse effect,

global warming, climate change, and the nuclear waste problem. Moreover, fossil fuel like

coal, natural gas, and oil, nuclear power plant primary fuellike uranium reserves are

basically limited. Hence, the exhaustion of fossilized energy resources and ever-growing

craving for energy in today’s industrially developed modern world have made it urgent to

seek for alternative or renewable energy sources and also todevise effective methods of

exploiting these alternative energy sources. To handle thetwofold challenge of the

increase in power production alongside reducing the greenhouse gases, transformation in

electricity system is viewed as being the easiest tool. Hence, the energy policy in many

countries is undergoing changes to motivate the use of cost-effective and reliable

low-carbon electricity generation sources [2,3].

Exploiting wind energy is a very old concept. Sailboat and sailing ships were

propelled across oceans utilizing wind power thousands of years ago. In the middle age,

people used wind mills for irrigation and grinding wheat to make flour [4]. It was the end

of the nineteenth century when energy contained in wind flow was exploited to generate

electricity by Scottish Professor James Blyth [5]. Since then, the wind energy conversion
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Fig. 1.1. Total world energy generation by source (2014) [3].

systems (WECS) has traveled a long path in terms of research andutilization and has

established itself a strong contender of world’s energy crisis solution among the options

available. Wind energy, of all the alternative options, is the most prominent alternative

energy source for producing electric power due to its zero fuel cost, no carbon emission,

cleanliness and renewable nature. WECS continues to get more and more importance and

attention all over the world and contributes a significant portion of the renewable energy

produced globally [3].

1.1 Wind Energy Status

Wind energy has gained much popularity as a renewable energysource all over the

world. It has its footprint in all regions of the world as evident from the statistics of Table

1.1. Ranked after the hydropower, wind energy is the second most power delivering

renewable source as shown by Fig. 1.1. In recent times, starting from 2000 to 2015 global

cumulative installed wind capacity has become 432 gigawatt(GW) from 17.4 GW as

shown in Fig. 1.2. In five years, from 2010 to 2015, it has become more than double.

Offshore wind farms are getting popular especially in Europe, as the available land for

onshore wind farms is scarce. As seen in Fig. 1.3, offshore wind farm installation has

2



Table 1.1. Regional distribution of the global installed wind power capacity (MW) by
2015.

Region
Wind Power Capacity (MW)

End of 2014 End of 2015 Installed in 2015 Increase (%)

Africa and Middle East 2,536 3,487 953 37.58

Asia 141,973 175,831 33,859 23.83

Europe 134,251 147,771 12,800 9.53

Latin America and Caribbean 8,568 12,220 3,652 42.62

North America 77,935 88,749 10,817 13.88

Pacific Region 4,442 4,823 380.6 8.57

World Total 369,705 432,883 63,467 17.17

Fig. 1.2. Global cumulative installed WECS capacity from 2000-2015 [6].

gained some real traction as the installed capacity has become threefold in 2015 as

compared to 2011.

1.2 Future of Wind Energy

It is apparent that the wind energy industry is growing very rapidly. It is expected

by the experts that it will supply about 10% of world’s electricity generation by the year

2020 [4]. Market forecast for the year 2015-2020 by GWEC [8] also supports this fact as

shown in Fig. 1.4. The USA has plans to produce 10% of the country’s electricity from the

wind in 2020, 20% in 2030, and 35% in 2050[9]. The government of China has set a

target to achieve 250 GW of wind capacity by 2020 as a part of fulfilling their goal to

3



Fig. 1.3. Offshore annual cumulative capacity (2011-2015)and Global cumulative
Offshore wind capacity[7].

Fig. 1.4. Market forecast for WECS installation 2015-2020 [8].

4



produce 15 percent of all electricity from renewable resources [10]. Other global leaders

in wind, like European countries, India, Brazil, and Australia have the similar future plan

to expand wind power share of the total energy production. The offshore wind farms are

gaining popularity. It is expected that by 2030, Europe willhave 120 GW of installed

offshore wind farm[11]. So it can be concluded that wind energy has a great prospect to

get expanded.

1.3 Background and Literature Review

A wind energy conversion system (WECS) converts the kinetic energy in the wind

into electrical energy. Kinetic energy is received by some arrangement, turbine blade for

example, which is used to create a rotational motion. This converts the kinetic energy in

wind motion into mechanical energy. The rotational mechanical energy in turbines is used

to rotate the rotor shaft of a wind generator. The generator takes the mechanical energy

and then converts it into electrical energy. The generated electrical energy is then fed to

load or electrical grid. A high level diagram of this conversion process is shown in

Fig. 1.5. Since the invention of the idea to utilize wind energy to produce electricity, wind

turbines were used to power up small households or farms. Around the 1980s, the

grid-connected operation of the wind turbines started to get momentum[12]. To enhance

the power production capacity, bunches of wind turbines were placed over some large

Fig. 1.5. Flow diagram of wind energy conversion system.
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Fig. 1.6. Type-1 or induction generator base fixed speed windturbine (FSWT).[14]

area, each being electrically connected to each other and their collective generated power

being fed into the grid through the electrical connection. This concept of producing more

power from the wind gave rise to the idea of the wind farm. At the initial days of grid

connected wind farms, induction generator based (IG) fixed speed wind turbines (FSWT)

were used (Fig. 1.6). They were chosen for their rugged construction, high operational

lifetime and low maintenance cost [13]. A few of them are still in operation. However,

unstable operation during the grid fault, reactive power requirement, lower mechanical

and electrical efficiency and the emergence of variable speed wind turbines, have made

them unpopular. In rare cases, they are considered as an option for erecting new wind

farms. Announcements have been made by greater than 90% of the wind turbine

manufacturer that their upcoming projects will utilize either semi-variable speed or full

variable speed wind turbines[15,16]. In fact, the legacy IGbased wind turbines are

retrofitted by variable speed wind turbines (VSWTs)[17]. To improve wind energy

conversion efficiency, reduce mechanical stress on wind turbines, increase grid power

quality and to abide by the grid codes, the high-power wind turbine technology has

undergone a transformation from fixed-speed to variable-speed operation. The doubly fed

induction generator (DFIG) (Fig. 1.7) and permanent magnetsynchronous generators

(PMSG) ( Fig. 1.8) are two variants of the VSWT. PMSG based windturbines are

6



Fig. 1.7. Type-3 or doubly fed induction generator (DFIG) based VSWT [14].

Fig. 1.8. Type-4 or permanent magnet synchronous generators (PMSG) based
VSWT [14].

completely decoupled from the utility grid due to the full power rating back to back

converters and hence the grid faults are invisible to the PMSGs. Output power can be

throttled to zero within a few milliseconds with the help of full power converter. But, the

DFIGs have some viable characteristics such as light weight, higher output power,

7



efficiency, lower cost, smaller size, partial rated converter incurring lower switching

losses. Hence, the DFIGs have captured about 50% of the wind energy market [18]. It is

the more favored choice for overhauling IG based legacy windfarms [17] due to similar

size and weight to IGs. Apart from the lower power electronicconverter rating required by

the DFIGs compared to the permanent magnet synchronous generators (PMSG) [19], the

recent permanent magnet material price upsurge [20] has given the DFIGs another

advantage over the PMSG based wind generators.

Widespread development and fast growth in installation capacity are helping to

make the wind energy very close to a mainstream energy source, and the production cost

is competitive with conventional sources of energy [3,21].The rapid rise in the power

generation level from wind farms has led to significant penetration of wind energy

systems in the existing electric power system. Majority portion of this wind energy stem

from DFIG technology [18] and more and more are likely to comein future [15,16].

Though offering an array of advantages, DFIGs are susceptible and shows vulnerable

nature to grid faults. Having partially rated converters, DFIGs have control over a portion

of the current supplied into the grid. To protect the wind farms from the grid fault and the

high overcurrent, the traditional practice was to isolate the wind farms from rest of the

system during the fault and reconnect them into the power grid when the whole system

comes back to normal operation. This whole procedure used totake a long period of time.

Now-a-days, a significant share of total generated electricity comes from wind energy for

some countries (e.g. Denmark produces 40% of its total electricity from the wind [22]).

Also, the capacity of the wind farms is comparable to conventional coal, gas or nuclear

power plant. Thus, isolating wind farms during grid fault may lead to instability in the

operation of the entire network [18,23,24]. To ensure the stable, secure and efficient

operation of the existing electric power grid, the transmission system operators (TSOs)

and energy regulator of diverse countries have enforced many specific technical

requirements often called as ’grid codes’ [25–30]. One of the most important grid codes is
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Fig. 1.9. Fault ride through standard set by FERC, U.S [25,30,31].

the fault ride through (FRT) requirements[25–28]. Requirements imposed through grid

code can be categorized into two major classes: the steady state or dynamic operation

requirements and the transient stability or low voltage ride through (LVRT) requirements.

The LVRT is the more severe and challenging concern for the manufacturers of the wind

turbine and power converters and wind farm operators [12,18]. It prohibits the sudden

disconnection of the wind farms and mandates the wind farms to support and stay

connected to the grid as the conventional generation units.The federal energy regulatory

commission (FERC) enforces the LVRT requirement as shown in Fig. 1.9. When the

nominal voltage at the point of common coupling (PCC) is at the shaded region followed

by a fault in the grid, the wind farms must stay connected. If the PCC voltage goes below

the solid blue line the wind farm can be disconnected [25–30]. To integrate any newly

installed wind farm into the grid, ensuring the FRT capability is mandatory as set by

FERC [30]. DFIG based wind farms are vulnerable to grid fault.The DFIG based wind

generators have their stator windings directly connected to rest of the grid, and only a

portion of the injected power is supplied through rotor windings via the converters. For

this reason, the DFIGs face uncontrolled dynamics during faults at the grid [24,32]. Since
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8.5 Chapter Summary

A particle swarm optimization based dc chopper is proposed in this chapter to

improve the LVRT capability of a DFIG based offshore wind farm connected to onshore

power system via VSC-HVDC. The performance of the PSO optimized dc chopper is

compared with that of the conventional dc chopper. From the simulation results and

discussions, it has been shown that:

1) The LVRT capability of a DFIG based offshore wind farms canbe enhanced

noticeably using the proposed PSO optimized dc chopper for onshore grid faults.

2) The wind farm can continue more stable operation by the proposed PSO optimized

dc chopper.

3) The PSO optimized dc chopper exhibits much better performance than the

conventional dc chopper.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

Semiconductor based fault current limiter namely, the bridge type fault current

limiter (BFCL) and parallel resonance fault current limiter (PRFCL) is proposed for the

LVRT capacity enhancement of onshore DFIG based wind farms,and a particle swarm

optimization based dc chopper is proposed for the LVRT improvement of offshore DFIG

based wind farms. Different controllers, linear as well as nonlinear intelligent controllers

have been designed and applied to the FCLs. BFCL, PRFCL, nonlinearcontrol based

NCMBFCL, fuzzy logic control based FLC-PRFCL, particle swarm optimization based

dc chopper are used for the LVRT application to wind farms forthe first time. From the

simulation results and discussions, the following points are noteworthy.

1. The BFCL and the PRFCL are very effective means to improve the LVRT capacity

of DFIG based variable speed wind generators.

2. Suppression of the fault current is achieved by using the BFCL and the PRFCL.

3. The BFCL and the PRFCL minimize the fluctuation of wind generator speed and

enhance overall stability.

4. The BFCL works better than the SDBR in every aspect.

5. Modified BFCL controlled with a nonlinear controller (NCMBFCL)performs better

than conventionally controlled BFCL and MBFCL.

6. The PRFCL shows better performance than the BFCL but the PRFCL is supposed to

be more costly as it requires a capacitor bank. So it is a capital versus requirement

tradeoff to pick up the more feasible solution.

7. Both the BFCL and the PRFCL give almost similar LVRT performance(PRFCL

offers slightly better) but the PRFCL gives somewhat better performance with
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respect to the active power, DFIG speed and dc link voltage. This is evident from

the graphical and numerical result.

8. The BFCL and the PRFCL has the potential to be the cost effectivemethod to

enhance the LVRT capability of the DFIG based wind generatorsystem.

9. PRFCL equipped with a nonlinear controller, which is the fuzzy logic controller,

works better than the conventionally controlled PRFCL.

10. Particle swarm optimization technique makes the dc chopper resistor more efficient

in enhancing LVRT of the offshore wind farm. Online tuning ofthe control

parameters is possible using PSO that can adapt to system changes.

9.2 Contributions from the Research

This research has presented some new ideas and probable solution to a very

intriguing problem in a timely manner. The solid contribution of this dissertation is listed

below.

1. New solutions, the BFCL and the PRFCL, are proposed to augment the LVRT

capability of DFIG based wind farms.

2. Effectiveness of proposed solutions are verified throughsimulation executed in the

test power system model. It was found that the BFCL is more effective than the

SDBR and the PRFCL works better than the BFCL.

3. The BFCL works better than the MBFCL. But when the MBFCL is controlled by

nonlinear controller it performs better than the BFCL. So it isbeneficial to use a

nonlinear controller to control the fault current limiters.

4. The proposed BFCL and the PRFCL are very effective for handlingthe most severe

(3LG) to the least severe (1LG) fault.
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5. Particle swarm optimization technique makes the dc chopper more efficient than the

conventionally controlled dc chopper.

6. A clear comparison is made with the similar technologies to give a good idea about

the degree of effectiveness.

7. Linear as well as nonlinear controllers and fuzzy logic based controllers are

designed. Usefulness of different control scheme for the FCLs are analyzed and

comparison is made. It was found that nonlinear based controllers, fuzzy logic

controller, particle swarm optimization based controllers perform better than the

conventional controller.

8. A good idea is provided to the reader to pick the best FCL withappropriate

controller to design the appropriate system and also to address the problem at hand.

9.3 Future Work

This dissertation really paves the way for some more interesting future research

and opens up new possibilities for effective solutions to demanding problems. The

potential future works generated by this dissertation, arelisted below.

1. Application of the BFCL and the PRFCL can be explored for a) smart grid and

microgrid applications b) signal delay and cyber security issues, c) wind farm load

flow control, d) wind farm optimal load dispatch, e) demand management, and g)

ocean tidal wave farm integration

2. Novel topology of the FCLs can be looked for.

3. Novel optimization algorithms can be explored for the BFCL and the PRFCL

components in a complex system.

4. Hardware simulation of the proposed BFCL and the PRFCL can be executed with

prototype wind generator system.
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