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ABSTRACT

Rashid, Gilmanur. PhD. The University of Memphis. August0IVRT
capacity enhancement of DFIG based wind farms by contrbiieed auxiliary devices.
Major Professor: Dr. Mohd. Hasan Ali.

Wind energy is one of the most prominent sources of renevaidegy. However,
subjected to the high penetration of wind energy into exgsgower grids, stability and
smooth operation of electric power system is at stake dusetodlnerability of the wind
farms to the grid faults. To address the situation, energylatory bodies and electricity
transmission system operators have imposed grid codestwesaverall system stability
and steady operations. The most challenging grid code iethgoltage ride through
(LVRT) which requires the wind farms to stay connected argpsut the grid during fault.
Based on this background, in order to enhance the LVRT capadilthe doubly fed
induction generator (DFIG) based onshore wind farms, otlatrbased auxiliary devices,
such as the bridge type fault current limiter (BFCL) and pata#sonance fault current
limiter (PRFCL) have been proposed in this dissertation. RitwrMatlab/Simulink based
simulations performed on various test systems under faulditions, it was found that the
BFCL and PRFCL are very effective devices in enhancing the LVRyBb#ity of the
DFIG based wind farms. Moreover, both devices outperforecthnventional series
dynamic braking resistor (SDBR) method. With a view to augingrnthe LVRT
performance much more, nonlinear equation governed dtertemd fuzzy logic based
controller are designed and applied to the modified BFCL (MBFCId)RRFCL,
respectively. From the simulation results, it was found thase nonlinear controllers
make the fault current limiters adaptive and respondingpégoiower system dynamics and
thus provide much better performance in LVRT capacity augaten. Furthermore,
maintaining the LVRT capability is also challenging for th&1G based offshore wind
farms (OWFs). A DC chopper is a popular choice for the LVRT caganhancement of
the OWFs. A metaheuristic algorithm, such as a particle svagrtimization (PSO)

technique is proposed to design a controller for the DC chppgsistor. Simulation



results reveal that the PSO controller based DC chopperis gftective than the

conventional DC chopper for the LVRT capacity improvemdrDBIG based OWFs.
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CHAPTER 1
INTRODUCTION

A significant connection between the socioeconomic growth@nsumption of
electricity has been found by the researchérs[1]. Econamdcsocial development and
demand of electricity help each other to grow. Electricityhie most convenient form of
energy that can be conveniently generated, transmittedliatrtbuted. Availability of
electricity facilitates the usage and development of modechnologies that improve the
quality of human life. As a result, people lean more towaedtihology and obtain more
stuff that needs electricity to operate. This in turns nsita&es more electricity
production. Fossil fuels, hydropower, and nuclear reacioe the widely used primary
energy sources. But they incur adverse environmental impfctexample, the increase
of the carbon dioxide({O,) emission into the atmosphere results in the greenhouset eff
global warming, climate change, and the nuclear waste pnobMoreover, fossil fuel like
coal, natural gas, and oil, nuclear power plant primary likeluranium reserves are
basically limited. Hence, the exhaustion of fossilizedrggeesources and ever-growing
craving for energy in today'’s industrially developed maodeorld have made it urgent to
seek for alternative or renewable energy sources and atievise effective methods of
exploiting these alternative energy sources. To handleabild challenge of the
increase in power production alongside reducing the g@mesdgases, transformation in
electricity system is viewed as being the easiest tool. Eetie energy policy in many
countries is undergoing changes to motivate the use ofeftesttive and reliable
low-carbon electricity generation sources [2, 3].

Exploiting wind energy is a very old concept. Sailboat andrgaships were
propelled across oceans utilizing wind power thousand®afs/ago. In the middle age,
people used wind mills for irrigation and grinding wheat taka flour [4]. It was the end
of the nineteenth century when energy contained in wind fl@s exploited to generate

electricity by Scottish Professor James Blyth [5]. Sincanthiee wind energy conversion
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Fig. 1.1. Total world energy generation by source (2014) [3]

systems (WECS) has traveled a long path in terms of researcdhtiéindtion and has
established itself a strong contender of world’s energsi€sgolution among the options
available. Wind energy, of all the alternative optionshis most prominent alternative
energy source for producing electric power due to its zeebdast, no carbon emission,
cleanliness and renewable nature. WECS continues to get mdmaare importance and
attention all over the world and contributes a significantipa of the renewable energy
produced globally([3].
1.1 Wind Energy Status

Wind energy has gained much popularity as a renewable esergge all over the
world. It has its footprint in all regions of the world as egit from the statistics of Table
[1.1. Ranked after the hydropower, wind energy is the secorad powver delivering
renewable source as shown by FigJ]1.1. In recent timesirgfdrom 2000 to 2015 global
cumulative installed wind capacity has become 432 giga{@t¥) from 17.4 GW as
shown in Fig[CLR. In five years, from 2010 to 2015, it has bezomore than double.
Offshore wind farms are getting popular especially in Ee;ggs the available land for

onshore wind farms is scarce. As seen in Eigl. 1.3, offshonel fiégrm installation has



Table 1.1. Regional distribution of the global installed evpower capacity (MW) by

2015
Region wind Power Capacity (MW)
End of 2014 | End of 2015 Installed in 2015 | Increase (%)
Africa and Middle East 2,536 3,487 953 37.58
Asia 141,973 175,831 33,859 23.83
Europe 134,251 147,771 12,800 9.53
Latin America and Caribbean 8,568 12,220 3,652 42.62
North America 77,935 88,749 10,817 13.88
Pacific Region 4,442 4,823 380.6 8.57
World Total 369,705 432,883 63,467 17.17

GLOBAL CUMULATIVE INSTALLED WIND CAPACITY 2000-2015
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Fig. 1.2. Global cumulative installed WECS capacity from 2005 [6].

gained some real traction as the installed capacity hasmedareefold in 2015 as
compared to 2011.
1.2 Future of Wind Energy

It is apparent that the wind energy industry is growing vexyidly. It is expected
by the experts that it will supply about 10% of world’s eléadty generation by the year
2020 [4]. Market forecast for the year 2015-2020 by GWEC [8paupports this fact as
shown in Fig[T.4. The USA has plans to produce 10% of the cpsr@lectricity from the
wind in 2020, 20% in 2030, and 35% in 2050[9]. The governmé@hina has set a

target to achieve 250 GW of wind capacity by 2020 as a partlofiiiig their goal to



ANNUAL CUMULATIVE CAPACITY (2011-2015)
GLOBAL CUMULATIVE OFFSHORE WIND CAPACITY IN 2015 |G
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Fig. 1.3. Offshore annual cumulative capacity (2011-2Gi) Global cumulative
Offshore wind capacity|7].

MARKET FORECAST FOR 2016-2020
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Source: GWEC

Fig. 1.4. Market forecast for WECS installation 2015-2020 [8]



produce 15 percent of all electricity from renewable resesi{10]. Other global leaders
in wind, like European countries, India, Brazil, and Ausadilave the similar future plan
to expand wind power share of the total energy productior. Gffshore wind farms are
gaining popularity. It is expected that by 2030, Europe halve 120 GW of installed
offshore wind farm[11]. So it can be concluded that wind ggdras a great prospect to
get expanded.
1.3 Background and Literature Review

A wind energy conversion system (WECS) converts the kinetgegnin the wind
into electrical energy. Kinetic energy is received by somaragement, turbine blade for
example, which is used to create a rotational motion. Thiwexds the kinetic energy in
wind motion into mechanical energy. The rotational mectarenergy in turbines is used
to rotate the rotor shaft of a wind generator. The generat@sthe mechanical energy
and then converts it into electrical energy. The generdeszdrecal energy is then fed to
load or electrical grid. A high level diagram of this conversprocess is shown in
Fig.[1.5. Since the invention of the idea to utilize wind yyetio produce electricity, wind
turbines were used to power up small households or farmsurrthe 1980s, the
grid-connected operation of the wind turbines started torgementum[12]. To enhance

the power production capacity, bunches of wind turbinesvptaiced over some large

Kinetic energy
in wind

I Wind
Turbine
I | Mechanical
Power
I Wind
Generator
I Electrical
Power

Fig. 1.5. Flow diagram of wind energy conversion system.
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area, each being electrically connected to each other andctbllective generated power
being fed into the grid through the electrical connectiohisitoncept of producing more
power from the wind gave rise to the idea of the wind farm. Atithtial days of grid
connected wind farms, induction generator based (IG) fipegd wind turbines (FSWT)
were used (Fid._116). They were chosen for their rugged oactsin, high operational
lifetime and low maintenance cost [13]. A few of them ard stibperation. However,
unstable operation during the grid fault, reactive powguneement, lower mechanical
and electrical efficiency and the emergence of variabledspaed turbines, have made
them unpopular. In rare cases, they are considered as amdptierecting new wind
farms. Announcements have been made by greater than 90% wint turbine
manufacturer that their upcoming projects will utilizeheit semi-variable speed or full
variable speed wind turbinés|15,16]. In fact, the legacy&Sed wind turbines are
retrofitted by variable speed wind turbines (VSWTS)[17]. fprove wind energy
conversion efficiency, reduce mechanical stress on wirldrtes, increase grid power
guality and to abide by the grid codes, the high-power wimbihe technology has
undergone a transformation from fixed-speed to variabéedperation. The doubly fed
induction generator (DFIG) (Fig._1.7) and permanent magyethronous generators

(PMSG) ( Fig[1.8) are two variants of the VSWT. PMSG based wumkdines are
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completely decoupled from the utility grid due to the fulMper rating back to back
converters and hence the grid faults are invisible to the 881®utput power can be
throttled to zero within a few milliseconds with the help aflfpower converter. But, the

DFIGs have some viable characteristics such as light welggiter output power,



efficiency, lower cost, smaller size, partial rated coresiricurring lower switching
losses. Hence, the DFIGs have captured about 50% of the wardymarket[18]. It is
the more favored choice for overhauling IG based legacy anus [17] due to similar
size and weight to IGs. Apart from the lower power electraanverter rating required by
the DFIGs compared to the permanent magnet synchronousag@rse(PMSG)[[19], the
recent permanent magnet material price upsurge [20] has ¢ine DFIGs another
advantage over the PMSG based wind generators.

Widespread development and fast growth in installatioracey are helping to
make the wind energy very close to a mainstream energy samdghe production cost
is competitive with conventional sources of eneigy [3, Z1e rapid rise in the power
generation level from wind farms has led to significant peatetn of wind energy
systems in the existing electric power system. Majoritytiparof this wind energy stem
from DFIG technology([18] and more and more are likely to comiiture [15, 16].
Though offering an array of advantages, DFIGs are susdeatitdl shows vulnerable
nature to grid faults. Having partially rated converters|lGs have control over a portion
of the current supplied into the grid. To protect the windrfarffrom the grid fault and the
high overcurrent, the traditional practice was to isolatewind farms from rest of the
system during the fault and reconnect them into the powenghnien the whole system
comes back to normal operation. This whole procedure ustdkéoa long period of time.
Now-a-days, a significant share of total generated elégtcomes from wind energy for
some countries (e.g. Denmark produces 40% of its totalretggtirom the wind [22]).
Also, the capacity of the wind farms is comparable to coneaal coal, gas or nuclear
power plant. Thus, isolating wind farms during grid faultyread to instability in the
operation of the entire network [18,123)24]. To ensure thblst secure and efficient
operation of the existing electric power grid, the transiois system operators (TSOS)
and energy regulator of diverse countries have enforced secific technical

requirements often called as 'grid codes’/[25-30]. One efrttost important grid codes is
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Fig. 1.9. Fault ride through standard set by FERC, U.5[25,H0, 3

the fault ride through (FRT) requirements[25+-28]. Requi&ata imposed through grid
code can be categorized into two major classes: the steamymstdynamic operation
requirements and the transient stability or low voltage tlttough (LVRT) requirements.
The LVRT is the more severe and challenging concern for theufie&turers of the wind
turbine and power converters and wind farm operaiors [1]2 Jigrohibits the sudden
disconnection of the wind farms and mandates the wind faossipport and stay
connected to the grid as the conventional generation uriis federal energy regulatory
commission (FERC) enforces the LVRT requirement as showngnlE®. When the
nominal voltage at the point of common coupling (PCC) is at tieded region followed
by a fault in the grid, the wind farms must stay connectedchdfPCC voltage goes below
the solid blue line the wind farm can be disconnected[25-B@]jntegrate any newly
installed wind farm into the grid, ensuring the FRT cap#&pis mandatory as set by
FERC [30]. DFIG based wind farms are vulnerable to grid falitte DFIG based wind
generators have their stator windings directly conneaedst of the grid, and only a
portion of the injected power is supplied through rotor vings via the converters. For

this reason, the DFIGs face uncontrolled dynamics duriotidat the grid([24, 32]. Since


















8.5 Chapter Summary

A particle swarm optimization based dc chopper is proposekis chapter to
improve the LVRT capability of a DFIG based offshore windifieconnected to onshore
power system via VSC-HVDC. The performance of the PSO optitchdcechopper is
compared with that of the conventional dc chopper. From ithelation results and

discussions, it has been shown that:

1) The LVRT capability of a DFIG based offshore wind farms baenhanced

noticeably using the proposed PSO optimized dc choppemfsihare grid faults.

2) The wind farm can continue more stable operation by thpgsed PSO optimized

dc chopper.

3) The PSO optimized dc chopper exhibits much better pedooa than the

conventional dc chopper.
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CHAPTER 9
CONCLUSION AND FUTURE WORK
9.1 Conclusion
Semiconductor based fault current limiter namely, thed®itype fault current
limiter (BFCL) and parallel resonance fault current limitBRFCL) is proposed for the
LVRT capacity enhancement of onshore DFIG based wind faamd a particle swarm
optimization based dc chopper is proposed for the LVRT im@neent of offshore DFIG
based wind farms. Different controllers, linear as well aslmear intelligent controllers
have been designed and applied to the FCLs. BFCL, PRFCL, nontine#&mol based
NCMBFCL, fuzzy logic control based FLC-PRFCL, particle swarm mation based
dc chopper are used for the LVRT application to wind farmaherfirst time. From the

simulation results and discussions, the following poimésreoteworthy.

1. The BFCL and the PRFCL are very effective means to improve th€TLdapacity

of DFIG based variable speed wind generators.
2. Suppression of the fault current is achieved by using thélB&nd the PRFCL.

3. The BFCL and the PRFCL minimize the fluctuation of wind generspeed and

enhance overall stability.
4. The BFCL works better than the SDBR in every aspect.

5. Modified BFCL controlled with a nonlinear controller (NCMBFCphgrforms better

than conventionally controlled BFCL and MBFCL.

6. The PRFCL shows better performance than the BFCL but the PRFQpp®sed to
be more costly as it requires a capacitor bank. So it is a@lamtsus requirement

tradeoff to pick up the more feasible solution.

7. Both the BFCL and the PRFCL give almost similar LVRT performa(fieFCL

offers slightly better) but the PRFCL gives somewhat betteiopmance with
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respect to the active power, DFIG speed and dc link voltageés i€ evident from

the graphical and numerical result.

8. The BFCL and the PRFCL has the potential to be the cost effetidtbod to

enhance the LVRT capability of the DFIG based wind genersygetem.

9. PRFCL equipped with a nonlinear controller, which is thezfulbgic controller,

works better than the conventionally controlled PRFCL.

10. Particle swarm optimization technique makes the dc phiopesistor more efficient
in enhancing LVRT of the offshore wind farm. Online tuningtié control

parameters is possible using PSO that can adapt to systemgesha

9.2 Contributions from the Research
This research has presented some new ideas and probatierstila very
intriguing problem in a timely manner. The solid contritaurtiof this dissertation is listed

below.

1. New solutions, the BFCL and the PRFCL, are proposed to augimebViRT

capability of DFIG based wind farms.

2. Effectiveness of proposed solutions are verified thraigiulation executed in the
test power system model. It was found that the BFCL is more &feethan the

SDBR and the PRFCL works better than the BFCL.

3. The BFCL works better than the MBFCL. But when the MBFCL is condiblby
nonlinear controller it performs better than the BFCL. So heseficial to use a

nonlinear controller to control the fault current limiters

4. The proposed BFCL and the PRFCL are very effective for hanthiegnost severe
(3LG) to the least severe (1LG) fault.
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5. Particle swarm optimization technique makes the dc chopre efficient than the

conventionally controlled dc chopper.

6. A clear comparison is made with the similar technologoegite a good idea about

the degree of effectiveness.

7. Linear as well as nonlinear controllers and fuzzy logisdahcontrollers are
designed. Usefulness of different control scheme for thed=&k analyzed and
comparison is made. It was found that nonlinear based derspfuzzy logic
controller, particle swarm optimization based contra@lperform better than the

conventional controller.

8. A good idea is provided to the reader to pick the best FCL apiropriate

controller to design the appropriate system and also toegsddhe problem at hand.

9.3 Future Work
This dissertation really paves the way for some more intexgfuture research
and opens up new possibilities for effective solutions tmdeding problems. The

potential future works generated by this dissertation]iared below.

1. Application of the BFCL and the PRFCL can be explored for a) sgrad and
microgrid applications b) signal delay and cyber secussuges, ¢) wind farm load
flow control, d) wind farm optimal load dispatch, e) demanchagement, and g)

ocean tidal wave farm integration
2. Novel topology of the FCLs can be looked for.

3. Novel optimization algorithms can be explored for the BF@H ¢he PRFCL

components in a complex system.

4. Hardware simulation of the proposed BFCL and the PRFCL candxuged with

prototype wind generator system.
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