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content, the higher is the amplitude of the oscillations. Also, fat has a complex MR spectrum 

with multiple peaks,150 the largest of which is the main methylene fat peak (Fig. 4-1B, peak 5).   

Hence, fitting a mono-exponential model to the signal decay without accounting for the multi-

peak fat spectrum will corrupt the R2* quantification. Chapter 6 investigates the performance of 

an ARMA signal model that incorporates fat-water modeling and simultaneous R2* 

quantification, in fat-iron phantoms and in-vivo cases.  

 

 
Figure 4-2. (A) T2* decay curves in livers of patients with 0%, 9% and 30% fat fractions, and 

(B) in vivo liver MR spectrum from a human subject with fatty liver.150 Of the six fat peaks (1–6) 

resolved in vivo, peak 5 is the largest fat peak that contributes ~70% of the fat signal, peaks 1 

and 2 are buried within the water peak, and peak 3 is small and is rarely seen in the human liver 

clinically. 

 

4.3 Extraction of Liver Parenchyma  

Currently, the radiologists at our (St. Jude Children’s Research Hospital) and other institutions151, 

152 compute reported R2*-MRI based HIC values by drawing a contour encompassing the entire 

liver in the acquired cross-section (Figure 4-3, Step 1), and then manually excluding vessel 

pixels above a certain T2* threshold value based on histogram analysis (Figure 4-3, Step 2). 
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Figure 5-3 and Figure 5-4 show the results of linear regression and Bland-Altman analysis 

of mean liver R2* values obtained by different acquisitions for the control and test cohorts. In 

the control cohort, the mean liver R2* values from FB multiecho UTE imaging were in close 

agreement with those from BH multiecho GRE imaging, with a slope of 0.96 and a mean bias of 

−12.9 s−1. In contrast, R2* values from FB multiecho GRE imaging were underestimated, with a 

slope of 0.8 and a mean bias of −48.2 s−1, compared with those of BH multiecho GRE imaging. 

Similarly, in the test cohort, the mean R2* values measured by FB multiecho GRE imaging were 

consistently lower than those measured by FB multiecho UTE imaging, with a mean bias of 

−24.6 s−1. Within the test cohort, the underestimation of R2* values is greater for nonsedated 

patients (slope, 0.83; mean bias, 45.4 s−1) than for sedated patients (slope, 0.96; mean bias, −20.2 

s−1). 

 

 
Figure 5-3. Mean liver R2* values obtained using different MRI acquisitions in control cohort. 

A and B, In linear regression plot (A) and Bland-Altman plot (B), circles denote data for patients 

who underwent FB multiecho gradient-recalled echo MRI, and triangles denote data for patients 

who underwent FB multiecho ultrashort TE imaging. In regression plot (A), solid lines denote 

regression lines for data points, and dashed line denotes unity line. In Bland-Altman plot (B), 

solid lines denote mean bias, and dashed lines denote 95% CIs (± 2 SD). Regression equations, 

correlation coefficients (R2), and mean biases for different comparisons are also included in 

plots. 
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Figure 5-4. Mean liver R2* values obtained using free-breathing (FB) multiecho gradient-

recalled echo (GRE) and FB multiecho ultrashort TE (UTE) MRI acquisitions in test cohort.      

A and B, In both linear regression plot (A) and Bland-Altman plot (B), gray circles denote 

sedated patients, and black circles denote nonsedated patients. In regression plot (A), solid line 

denotes regression line for entire test cohort (both sedated and nonsedated patients), and dashed 

line denotes unity line. Regression plot (A) also includes regression equation and correlation 

coefficient (R2) for regression analysis. In Bland-Altman plot (B), thick solid line denotes mean 

bias and dashed lines represent 95% CIs (± 2 SD); mean bias value is also shown. Within test 

cohort, regression equation was y = 0.96*x – 5.55, R2 = 0.99, and mean bias was −20.2 s−1 for 

sedated group, whereas regression equation was y = 0.83*x + 37.62, R2 = 0.96, and mean bias 

was –45.4 s−1 for nonsedated group. 

 

 

Figure 5-5 shows scatterplots of the mean R2* values and CV R2* values measured using 

different acquisition techniques in the control and test cohorts. For the control cohort, the mean 

R2* CV for FB multiecho GRE imaging (25.9% ± 8.6%) was almost double that for BH 

multiecho GRE imaging (15.4% ± 5.5%), whereas it is even lower for FB multiecho UTE 

imaging (11.1% ± 3.1%). Likewise, for the test cohort, the mean R2* CV for FB multiecho GRE 

imaging (18.7% ± 6.4%) was double that for FB multiecho UTE imaging (9.6% ± 2.7%). Also, 

within the test cohort, the mean R2* CV for FB multiecho GRE imaging was higher for the 

nonsedated subgroup than for the sedated subgroup. For both cohorts, the R2* CV for FB 

multiecho UTE imaging was relatively constant over the entire range of R2* values, but the R2* 

CV for FB multiecho GRE imaging increased with an increase in R2* values. 
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R2* value. The golden brown deposits on H&E and blue deposits on Perl’s iron stains indicate 

that the patient has severe iron overload. Figure 6-6A shows the FF maps calculated with ARMA 

and NLSQ methods, with ARMA mean FF ~0% whereas NLSQ produced a false FF of ~11% 

when the histology stains did not show any clear vacuoles (Figure 6-6B) suggesting the absence 

of fat. 

 

 

 

Figure 6-6. R2*-MRI and biopsy results obtained from a 9-year old sickle cell anemia patient 

with biopsy confirmed iron overload and no steatosis. (A) Calculated R2* maps obtained with 

mono-exponential, NLSQ and ARMA models and FF maps obtained with NLSQ and ARMA 

models at 1.5T using a single-shot GRE sequence, and (B) histology slides of the liver biopsy 

sample with H&E and Perl’s iron stains. Mean (±SD) R2* values and FFs measured in a small 

circular ROI drawn in the right lobe of the liver were displayed for each of the models. ARMA 

produced a homogeneous liver R2* map and the mean R2* was close to the R2* calculated using 

the reference mono-exponential model and calculated FF was ~0%. In contrast, the liver R2* 

map calculated by NLSQ was not homogeneous and overestimated R2* compared to reference 

mono-exponential model. Further, NLSQ produced a mean FF ~11% where there is no fat 

present as confirmed by biopsy (i.e., no white bubbles on histology slides). The golden brown 

deposits on H&E and blue deposits on Perl’s iron stains indicate that the patient has severe iron 

overload. 

 

6.5 Discussion 

The presence of fat introduces oscillations in the signal decay of the multiecho GRE acquisition 

and hence, using standard mono-exponential signal models for R2* quantification will confound 
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R2* measurements. Likewise, the presence of iron increases R2* causing rapid signal decay and 

complicates fat quantification. Signal modeling techniques that perform multi-spectral fat-water 

modeling will thus enable simultaneous quantification of R2* and FF. In this study, the 

performance of ARMA in simultaneously quantifying R2* and FF was evaluated, and the results 

were compared to a standard mono-exponential model and the NLSQ approach available in the 

ISMRM Fat-Water Toolbox.181 

First, this study investigated the performances of mono-exponential, NLSQ and ARMA 

models in fat-iron phantoms with varying iron concentrations and fat percentages that cover the 

clinically relevant R2* and FF ranges. The mono-exponential model produced mean R2* values 

close to reference values in phantoms with low iron concentrations and any FFs. However, at the 

highest iron concentrations (R2* ~750 s-1), R2* values were overestimated at 1.5T and 

underestimated at 3T with higher FFs (20, 40%) likely depending upon the influence of in-phase 

or out-phase TEs (~2.2 ms) on fitting the signal decay (e.g., the signal fit is affected by the first 

out-phase TE at 1.5T and in-phase TE at 3T leading to R2* over- or under-estimations). Hence, 

incorporating fat into the signal model is essential for accurate R2* quantification especially at 

high iron concentrations and FFs.  

All models were investigated using a single-shot GRE acquisition as used in the in-vivo 

study and a dual-shot GRE acquisition that allowed denser sampling of the signal decay. Mono-

exponential R2* results were similar between single-shot and dual-shot acquisitions in all 

phantoms at both field strengths. NLSQ and ARMA produced similar R2* and FFs in agreement 

with reference values using either single-shot or dual-shot GRE for fat-iron phantoms with low 

iron concentrations (R2* < 400) at 1.5T. At higher iron concentrations (R2* > 400), NLSQ and 

ARMA R2* and FF results were improved by using the dual-shot GRE sequence compared to 
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the single-shot sequence. Because higher iron concentrations lead to rapid signal decay, ΔTE 

should be short enough to capture the signal decay in cases of severe iron overload. Similar 

results were also observed at 3T except that ARMA failed to estimate the FF at 3T with single-

shot GRE because the ΔTE used (~1.44 ms) does not fulfill the Nyquist criterion which is 

essential to avoid spectral aliasing. As fat and water precession frequencies differ by ~440Hz at 

3T, a ΔTE ≤ 1.1 ms is required to meet the Nyquist criterion. Hence, using dual-shot GRE 

acquisition (ΔTE = 0.74 ms) enabled ARMA to perform fat-water separation at 3T and produce 

R2* and FF results in agreement with the expected results. In contrast, the NLSQ approach could 

still perform fat-water separation at 3T using single-shot GRE because it imposes constraints 

such as spatial regularization in estimating B0 field map whereas ARMA does not.184 

With dual-shot GRE, ARMA and NLSQ R2* results calculated at 1.5T produced 

excellent linear correlation with true iron concentrations except that ARMA overestimated the 

R2* with higher SD for the phantom with the highest iron (R2* ~ 750 s-1) and FF (~40%). 

Similarly, phantom FFs estimated using ARMA and NLSQ at 1.5T are in excellent agreement to 

the theoretical FFs for all iron concentrations except for the most extreme iron concentration 

(R2* ~ 750 s-1). At 3T, both, ARMA and NLSQ produced improved R2* and FF results that are 

in excellent linear agreement with reference R2* and true FFs respectively even for the highest 

iron concentration, which may be due to the higher SNR at 3T, i.e., twice compared to 1.5T.  

R2* and FF results at high iron concentrations using either ARMA or NLSQ will 

improve with the use of high flip angles as the SNR of the images increase with the flip angle 

and will thus enable accurate R2* and FF mapping. In theory, the SNR performance is maximal 

for the Ernst angle, which is 45o in this study for a TR of 200 ms and assuming T1 of water is 

586 ms at 1.5T.185 But the use of high flip angles such as 45o will result in overestimation of FF 
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In conclusion, our automatic vessel exclusion technique is equivalent to the conventional 

technique and can be applied to extract the entire liver parenchyma in the acquired cross-

sectional image while substantially reducing operator time and input. This method can improve 

the radiologist’s workflow while potentially reducing inter-rater variability in HIC measurements 

and optimizing management of patients with iron overload. 

 

7.6 Supplement 

7.6.1 Implementation of Vesselness Filter on free-breathing radial UTE data 

For massive iron cases and sedated or BH non-compliant cases, multiecho UTE imaging could 

be potentially superior to multiecho GRE (as demonstrated in Chapter 6).13, 143  So, in this study 

the implementation of Frangi filter for automatic vessel exclusion was also tested on free-

breathing radial UTE data to obtain an accurate and user independent mean R2* estimation.  

 

Subjects & UTE Data 

Multiecho UTE data was collected from 141 patients with hepatic iron overload. Participants had 

a history of >12 cumulative packed red blood cell transfusions, and all were consented to 

participate in a prospective institutional review board approved study on iron overload 

assessment (www.clinicaltrials.gov #NCT01572922).  

Multiecho UTE images were acquired axially at the location of the main portal vein 

during free breathing. The multiecho UTE sequence was applied with five interleaved echo trains 

(shifted by an echo time increment of ∆TEinc = 0.25 ms) following the method description in 

Chapter 5.13, 143 Sequence parameters are as follows: TR = 52.5 ms, TE1 = 0.1 ms, echo spacing 

ΔTE = 1.8 ms, 12 echoes per interleave, number of radial lines = 192, flip angle = 20°, slice 

thickness = 10 mm, pixel bandwidth = 780 Hz/Px, number of averages = 3, and scan time = 5:08 
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min. The sequence includes application of two spatial saturation bands placed in parallel to the 

imaging slice (gap between saturation band and imaging slice = 10 mm, saturation band 

thickness = 100 mm) to eliminate out-of-slice signal contributions, and chemically selective 

saturation (CHESS) radiofrequency pulses to reduce radial streaking artifacts.143  

 

Data Analysis 

Quantitative T2*/R2* maps were calculated as described in sections 5.2.3 and 7.3.4. Mean liver 

R2* values were calculated drawing an ROI encompassing the whole liver and excluding the 

blood vessels using T2* thresholding technique as the reference method and an automatic vessel 

exclusion technique based on multi-scale vesselness filter as described in 7.3.4. The vesselness 

filter was implemented on the UTE data with the same parameters used for the GRE study (see 

section 7.3.4). However, the filter was tested only on quantitative T2* and R2* maps and not on 

composite magnitude images for the UTE data. This was because the contrast of the blood 

vessels on the magnitude images changed over the TEs due to the application of spatial 

saturation bands before the RF excitation. The vessels appeared darker than the liver parenchyma 

initially as the blood is saturated and later became brighter than the liver tissue towards the end 

of the echo train as the effect of the saturation pulse wears off, since unsaturated blood streams 

into the slice.  

 

Results & Discussion 

Of 141 MRI scans, 2 exams were excluded due to a low number of fitted pixels and 

susceptibility artifacts. Measured R2* values in the study cohort ranged from 34 to 1915 s-1 

(mean±SD, 440 ± 387 s-1) for T2*-thresholding, 35 to 1978 s-1 (mean±SD, 450 ± 397 s-1) for 

T2*-based filter and 34 to 1985 s-1 (mean±SD, 449 ± 398 s-1) for R2*-based filter.  Figure 7-9 



140 

 

shows the extracted parenchyma masks obtained using reference and filter-based methods in 

mild (3 < HIC < 7 mg Fe/g), moderate (7 < HIC < 15 mg Fe/g), and massive (HIC > 25 mg Fe/g) 

iron overloaded cases. For all 3 cases, the reference analysis based on T2*-thresholding did not 

completely exclude small vessels and pixels affected with partial volume effects at the tissue and 

vessel boundaries and produced slightly lower R2* values compared to filter-based analysis. On 

the other hand, all filter-based methods provided good vessel segmentation by excluding even 

small vessels and pixels affected by partial volume effects while preserving parenchyma pixels.  

 

 
Figure 7-9. Quantitative T2* maps of the acquired slice (first column) and extracted parenchyma 

T2* maps obtained after vessel exclusion using manual, histogram-based T2*-thresholding 

performed by a radiologist (second column), and T2*-based (third column) and R2*-based (last 

column) filter methods in cases of mild (top row), moderate (middle row), and high (bottom row) 

iron overload. Mean liver R2* and associated R2*-HIC values calculated using the calibration 

curve11, 152 for the extracted liver parenchyma for each technique are also given. Slight R2* 

underestimation was observed in T2*-thresholding analysis likely because of inclusion of small 

vessels and pixels affected by partial volume effects. 
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Figure 7-10 depicts the DC between the parenchyma masks extracted using reference and 

filter-based methods. The mean DCs were 90.0 ± 3.2% for T2*-based and 92.4 ± 3.0% for R2*-

based filters. Figure 7-11 shows the R2* comparisons between the reference and automated 

methods using linear regression and Bland-Altman analysis. Mean liver R2* values estimated 

from all filter-based methods showed excellent correlation (R2 > 0.99, P < 0.001) and a slope 

slightly over 1 (T2*-based: 1.03 and R2*-based: 1.03) compared to reference R2* values. Bland-

Altman analysis showed a small positive R2* bias (1.63 and 2.01%) for filter-based methods 

compared to the reference method (Figure 7-11). Similar to GRE-based vessel segmentation 

results, this positive bias exists because incomplete vessel exclusion by the reference method led 

to small R2* underestimation compared with filter-based methods. 

 

 

Figure 7-10. Dice similarity coefficients for parenchyma masks extracted using T2*-

thresholding and filter-based methods: T2*-based (A), and R2*-based (B). Mean DCs were 90.0 

± 3.2% for T2*-based, and 92.4 ± 3.0% for R2*-based methods. 
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Figure 7-11. Linear regression (A, C) and Bland–Altman (B, D) analysis of mean liver R2* 

values obtained by conventional T2*-thresholding and filter-based methods: T2*-based (A, B) 

and R2*-based (C, D).  For regression plots, solid lines represent regression lines and the dashed 

line represents the unity line. For Bland–Altman plots, solid lines represent mean bias and 

dashed lines represent 95% confidence intervals (±1.96*SD).  Regression equations, correlation 

coefficients (R2), and mean biases are also included in the respective plots. 

 

 In summary, the excellent agreement between manual T2*-thresholding and automated 

liver parenchyma segmentation demonstrates the applicability, accuracy and robustness of the 

vesselness filter even for UTE imaging. Hence, this study validates that vesselness filters can be 

applied to quantitative R2*-MRI methods, both GRE and UTE acquisitions, to provide 

automated mean liver R2* measurements by reducing operator/radiologist input and will 

improve the clinical workflow in R2*-based HIC assessments that guide iron removal therapy.  
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Chapter 8  

Limitations and Future Work 

 

This chapter discusses the limitations encountered in this dissertation work with respect to the 

clinical validation of radial UTE acquisition, ARMA signal model for fat-water and 

simultaneous R2* estimation, and automated extraction of liver parenchyma, and discusses the 

future work for overcoming these challenges. 

 

8.1 Validation between UTE R2* Measurements and Biopsy HIC 

All current R2*-HIC calibration equations were derived between R2* measurements obtained 

with Cartesian BH multiecho GRE and HIC measured by liver biopsy. Hence, in order to 

translate the R2* measurements obtained with FB multiecho UTE imaging into clinical practice, 

it is necessary to demonstrate that there is good agreement between R2* values measured by FB 

multiecho UTE with those measured by the reference BH multiecho GRE method. Although our 

first study (Chapter 5) showed that mean liver R2* values acquired with both methods were 

fairly similar in 16 patients, these findings clearly need to be validated in a larger group of 

patients. But previous studies have demonstrated that current GRE techniques lose their 

precision in R2* quantification for high HIC (>15 mg Fe/g) and might even fail for massive HIC 

(>25 mg Fe/g).10, 11 As GRE is inaccurate for high and massive iron overload assessment, it is 

therefore necessary to perform an independent calibration study directly between UTE R2* 

values and biopsy HIC values. Such an R2*-HIC calibration curve is currently being developed 

under the MIDAS (Massive Iron Deposit Assessment, National Clinical Trials identifier 

01572922 on ClinicalTrials.gov) study at our institution - St. Jude Children’s Research Hospital. 



144 

 

This calibration study will serve 2 major purposes: extend the measurable R2*-based HIC range, 

and remove the need for breath-holding for the assessment of hepatic iron overload by R2*-MRI.  

 

8.2  Investigation of Fat-water Models with UTE Imaging 

From Chapter 6, our fat-iron phantom study has shown that dual-shot GRE acquisition produced 

better R2* and FF results using both NLSQ and ARMA fat-water models compared to single-

shot GRE. However, both fat-water models produced inaccurate FFs at 1.5T for the highest iron 

concentration even with the dual-shot GRE. In presence of high iron, the signal drops rapidly 

before the first TE with the current GRE acquisition, limiting dephasing between water and fat 

components and causing fat quantification to become less stable with either of the methods.187 In 

these high iron cases (R2* ~ 750 s-1) or even in investigating massive iron cases (R2* > 750 s-1), 

we believe that as UTE protocols provide more signal by sampling shorter TEs, they could 

benefit fat-water modeling methods to provide both accurate R2* and FF results. Hence, future 

work should investigate ARMA and NLSQ models with multiecho UTE imaging. 

 

8.3 Automatic Liver Contouring 

Our automated vessel exclusion technique (Chapter 7) – although an advance due to the 

reduction in user interface and subjectivity – is not fully automated, as the reviewer must still 

outline the whole-liver ROI. A future improvement would be to entirely eliminate user 

interaction by incorporating automatic liver-contouring techniques that can extract the whole-

liver region from the 2D cross-sectional image. One possible solution is to first generate a liver 

probability map by aligning all 565 single-slice liver images analyzed in Chapter 7. Each source 

image can then be aligned to the liver probability map and the whole-liver region can be 
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extracted using region-growing methods by placing seed points in the pixels with high 

probability (> 90%) of belonging to liver. An alternative solution is to use the 565 datasets to 

train and develop deep learning algorithms to automatically extract the liver region.204 Other 

potential solutions are to obtain additional imaging data such as fat/water images or T1 maps at 

the same slice location and FOV of GRE/UTE acquisitions as they might provide better 

delineation of the liver region and use these maps to extract the liver region. If automated liver-

contouring works, all manual post-processing steps can be removed and a fully automated 

extraction of liver parenchyma and mean R2*/HIC estimation can be accomplished on the MR 

scanner console itself. This process will substantially improve the clinical workflow, as the 

radiologist could just review the results on a PACS server and the hematologist can readily use 

the mean R2*-based HIC results for deciding on the chelation dose. 
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Chapter 9  

Conclusions 

 

This dissertation work provided solutions for three limitations in current R2*-based HIC 

quantification, which is crucial in guiding the physicians with the iron removal therapy in iron 

overloaded patients. These limitations include respiratory motion artifacts affecting the R2* 

image acquisition, presence of fat affecting the standard mono-exponential R2* signal model, 

and operator dependence in extracting the mean R2* of the liver parenchyma. All these 

limitations eventually affect the accuracy, precision and clinical workflow of R2*-based HIC 

estimations.  

The principal contributions of this dissertation are: 

1. Radial UTE imaging removes the need for breath-holding in R2* quantification. Our first 

study (Chapter 5) demonstrated the impact of respiratory motion artifacts on R2* 

quantification using the standard Cartesian free-breathing GRE sequence and evaluated an 

alternative acquisition technique based on radial UTE imaging that improved the image 

quality and subsequently the R2* quantification under free-breathing conditions. Such a free-

breathing UTE acquisition is essential in young or frail patients who are sedated or incapable 

of performing breath-hold scans in determining accurate R2*-based HIC that eventually 

guides chelation therapy. 

2. ARMA signal model for fat-water separation and simultaneous R2* quantification. Our 

second study (Chapter 6) showed the influence of the presence of fat and iron on R2* 

quantification using the standard mono-exponential signal model, and evaluated an 

alternative signal model based on ARMA that performs multi-spectral fat-water modeling to 

simultaneously quantify both R2* and fat fraction. The ARMA based signal model not only 
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separates the fat signal from the water and provides accurate R2* quantification for hepatic 

iron overload assessment but also provides fat fraction quantification that is important in the 

diagnosis of hepatic steatosis.  

3. Automated vessel exclusion technique for mean liver R2* estimation. Our third study 

(Chapter 7)  demonstrated the limitations of the current radiologist’s workflow in extracting 

the liver parenchyma and investigated a robust and automated vessel exclusion technique for 

mean liver R2*/HIC estimation. Such an automated technique will considerably reduce the 

operator dependence and interpretation time and hence, provide an optimized clinical 

workflow and remove any potential bias in R2*-based HIC assessments for management of 

patients with iron overload.  

Each of these 3 studies provides improvements in image acquisition, signal modeling, and 

extraction of liver parenchyma and the 3 studies can be cascaded to produce an R2*-MRI based 

HIC estimation framework (Chapter 4): Data acquired from a breath-hold multiecho GRE or a 

free-breathing multiecho UTE could be processed by fitting either a mono-exponential signal 

model in the absence of fat or via ARMA modeling in the presence of fat to produce R2* maps, 

and finally the liver parenchyma could be automatically extracted from R2* maps using vessel 

exclusion technique to estimate the mean R2*-MRI based HIC.  

Hence, efforts made for this dissertation provided solutions to improve the accuracy, 

precision and optimize the clinical workflow of R2*-MRI based HIC assessments. With 

sufficient continued effort toward implementation, these solutions can help ensure that 

appropriate dosing of iron unloading treatment is given to iron overloaded patients to 

significantly improve patient care and quality of life. 
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