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FIGURE 12: Contact angle measurement showing that 2H-MoS2 is hy-
drophobic [10]

FIGURE 13: Contact angle measurement showing that 1T-MoS2 is hy-
drophilic [13]
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3 Methods

3.1 Overview of Density Functional Theory

As with any problem in quantum mechanics, to find properties of a

many-body system, we must first look at solving the many-body Schrödinger

equation

Ĥψ = [T̂ + V̂ + Û]ψ (3.1)

where T is the kinetic energy, V is the external potential (i.e. potential from nuceli),

and U is the interaction energy between the electrons. However, the interaction term

means that this equation cannot be separated into single-electron Shrödinger

equations. There are many methods for solving this equation such as the

Hartree-Fock method [105–107], but they are often computationally very expensive.

Conversely, density functional theory (DFT) is a more computationally cheap, yet still

accurate method for solving the many-body Shrödinger equation.

DFT rests on two main postulates: the Hohenberg-Kohn theorem [108] and the

Kohn-Sham ansatz [109]. The Hohenberg-Kohn theorem says that there is a

one-to-one correspondence between the electron density, ρ(~r), and the external

potential. In other words, the wavefunction, ψ, is a unique functional of ρ(~r). The

Kohn-Sham ansatz states that, instead of solving the complex problem considering

interactions between electrons, one can solve a simpler, non-interacting system. As

long as the densities match, the ground-state energies will match. In essence, we can

consider an effective potential, Veff, that does not explicitly depend on

electron-electron interactions.
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Going back to the Shrödinger equation, we can now separate the equations

into

Ĥφi = [T̂ + V̂eff]φi (3.2)

that can be solved for φi which can then be used to calculate the electron density

ρ(~r) =
N

∑
i
|φi(~r)|2 . (3.3)

However, Veff that we used to calculate ρ(~r) implicitly depends on the interaction

potential

Veff = V(~r) + Vint[ρ(~r)] (3.4)

which is a functional of ρ(~r). For the correct solution, we would expect the “input" ρ

(what is used to calculate Veff) to equal the “output" ρ (calculated from the solution of

the Schrödinger equation). This criteria is called self-consistency. In order to reach a

self-consistent solution, we must solve this equation iteratively until convergence.

3.2 Additional Approximations

The interaction potential, Vint, used in equation 3.4 can be expanded to

Vint[ρ(~r)] = VHartree[ρ(~r)] + VXC[ρ(~r)] (3.5)

where VHartree[ρ(~r)] is the Coulomb interaction between electrons and VXC[ρ(~r)] is the

exchange-correlation energy. The exact form of VXC[ρ(~r)] is unknown, but there are

many approximations that can be used such as the local density approximation

(LDA) [110–112]

VLDA
XC [ρ] =

∫
εXC(ρ)ρ(~r) d3r (3.6)
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where only the local electron density is considered. In our calculations, however, we

used the generalized gradient approximation (GGA) [113]

VGGA
XC [ρ] =

∫
εXC(ρ↑, ρ↓,∇ρ↑,∇ρ↓)ρ(~r) d3r (3.7)

that also considers spin and the gradient of the density to account for the density not

being completely homogeneous. This approximation comes in many different forms

that result in different functionals for VXC. Typically GGA’s will depend on fitting

with experimental parameters, but we use the Perdew, Burke, and Ernzerhof (PBE)

functional [113] that only uses fundamental constants as parameters so that our

calculations are truly from “first principles."

Another useful approximation is using a pseudopotential [114] that includes

the affects of the nucleus along with the core electrons so that the many-body

wavefunction only considers valence electrons. However, there are still problems

with this method because the valence electrons contain rapid oscillations near the

core that require a lot of Fourier terms that can be computationally expensive. To help

with this issue, our calculations use the projector augmented wave (PAW) method

[115] that transforms the rapidly-oscillating wavefunctions into smooth

wavefunctions that require fewer Fourier terms and are more computationally cheap.

3.3 Problem Setup and Definitions

The DFT calculations were performed using the Vienna ab initio simulation

package (VASP) [116] including an implicit solvation model [117, 118]. To set up our

specific problem, we generated a 4× 4× 1 supercell for the 2H, 1T, and 1T′ phases.

We used this as opposed to a single unit cell to avoid interaction between

neighboring images when we added adsorbates and defects. The resulting coverage
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(A) 2H-MoS2 (B) 1T-MoS2 (C) 1T′-MoS2

FIGURE 14: The initial geometry of each of the MoS2 polytypes with a
pristine, clean surface (shown from the a and c directions)

of the adsorbates/defects (only added to one side of the slab) was 6.25% (measured

by number of adsorbates per MoS2 unit) with a separation of ≈ 11Å. We used

periodic boundary conditions and a vacuum space of ≈ 16Åto simulate monolayer

MoS2. The Brillouin zone was sampled using the Monkhorst-Pack kpoint mesh [119].

The initial geometries for all structures are given in figures 14-19.

The adsorption energy of water on MoS2 is defined as

Ead = (Etotal − EMoS2 − Efg)/Nfg (3.8)

where Etotal, EMoS2 , and Efg correspond to the energies of functionalized MoS2,

unfunctionalized MoS2, and the functional group (H2O, OH, or H), respectively, and

Nfg is the number of functional groups adsorbed, which was always one in our

calculations. A negative value of Ead indicates a favorable interaction.
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