

v

RegEx Versus Judges ... 35

RegEx/LSA Combination Versus Judges .. 36

Repeated Measures ANOVAs ... 37

Between Judges .. 37

LSA Versus Judges ... 38

RegEx Versus Judges ... 40

RegEx/LSA Combination Versus Judges .. 43

5 Discussion .. 45

 References ... 52

Appendices ... 58

A. Tables and Figures ... 58

B. Annotated Python Code ... 71

Codec-to-txt PDF Version/ Text Chunker/Corpus Writing Tool 71

Codec-to-txt HTML Version/ Text Chunker/Corpus Writing Tool 74

LSA Model Builder with Performance Metrics .. 74

LSA Model Loader .. 80

Automated Model Simulation with Full Performance Metrics .. 81

vi

Preface

The first two installments of this body of research have been submitted and published as

short papers by Educational Data Mining Society and Learning at Scale. The installments were

published in the proceedings of Educational Data Mining in 2018, and the proceedings of the Sixth

ACM Conference on Learning @ Scale ‘19. The citations for the published work are as follows:

Carmon, C.M., Hampton, A.J., Morgan, B., Cai, Z., Wang, L., & Graesser, A.C. (2019).

Semantic matching evaluation of user responses to electronics questions in

AutoTutor. In Sixth (2019) ACM Conference on Learning @ Scale (4 pages).

Chicago, IL: ACM. . https://doi.org/10.1145/3330430.3333649

Carmon, C., Morgan, B., Hampton, A.J., Cai, Z., & Graesser, A.C. (2018). Semantic

matching evaluation in ElectronixTutor. In K. E. Boyer, & M. Yudelson (Eds.),

Proceedings of the 11th International Conference on Educational Data Mining (pp.

580–583). Buffalo, NY: EDM Society.

These publications describe data collected that asked students electronics questions. The

questions were rated by subject-matter experts and these judge ratings were compared to the

computer scoring of the same answers to questions. Optimizing these observations can reveal the

degree to which a student response is semantically related to the good answer for any given

question. The purpose of this body of work is to highlight the degree to which human judgement

and computer scoring may be similar on a task such as automatic short essay grading.

The content published in Educational Data Mining covers the pilot stage of the research

where the data set was relatively small (n = 2000). In this paper, we randomly selected 200 student

responses out of the 2000 and compared computer scoring to judge ratings. The analysis only

vii

considered judge ratings of 6 as ideal/complete answers and there was a fixed threshold for

computer scoring (Regular Expressions and Latent Semantic Analysis).

In the content published in Learning at Scale, two additional thresholds for both judges and

computer scoring were considered in the model. Additionally, precision and recall, as well as signal

detection theory were included in the analyses to explain the results for researchers in

computational linguistics and psychology rather than only reporting results in terms of inter-rater

agreement (Cohen’s kappa).

viii

1

Chapter 1

Introduction

Effective learning strategies in traditional face-to-face environments have long been studied,

especially in interactions between tutors and individuals or small groups. The literature on

traditional learning environments discusses effective learning strategies in classroom contexts as

well as in one-on-one interactions (Bloom, 1984). Classroom contexts typically have somewhere

around 30 students for every instructor. Students greatly outnumber teachers in traditional

classroom environments and students often rely on individual attention from the teacher in order to

succeed and meet learning goals.

Research in the field highlights instructional benefits that students receive through traditional

tutoring rather than traditional classroom interaction (Cohen, Kulik, & Kulik, 1982). Tutoring

occurs in face-to-face interactions where a teacher provides individual attention to a single student

or a small group of students. Graesser, Person, & Magliano (1995) documents the pedagogical

patterns of tutor-tutee interactions. Tutors and tutees work collaboratively to improve the initial

answer to the question, and this is what sets tutoring apart from classroom instruction. Traditional

classroom and tutoring approaches each have advantages and disadvantages, but here we focus

solely on tutoring approaches in educational software such as an Intelligent Tutoring System. The

next section discusses tutoring in computerized systems in greater detail.

Intelligent Tutoring Systems

Though traditional learning has been well-documented and researched, education in practice

2

constantly shifts to mirror contemporary advances in culture, technology, and ever-evolving best

practices. Perhaps one of the most noteworthy trends in modern education is an exponential

increase in computer usage. The prevalence of computer usage in education can be observed in

applications such as online access to class materials, digital discourse spaces, and new learner

technologies. Here, we focus on new learner technologies. Intelligent Tutoring Systems (ITSs),

online courses, and easy access to educational tools/software are just a few examples of learner

technologies we can expect to see in contemporary educational settings. This thesis focuses on

automatic assessment of user input in an ITS that implements conversational agents in a turn-based

dialogue to teach electronics.

ITSs provide immediate, individualized instruction and feedback to students without

intervention from a human tutor. Some ITSs incorporate natural language communication with the

students and have been observed to provide instruction and feedback (hints, prompts, tutoring

questions, etc.) to the student without much variation from human tutoring (Graesser, 2016; Olney

et al., 2012; VanLehn et al., 2007). Additionally, ITSs can cover a wide range of domains,

including physics (AutoTutor, Graesser et al., 2004; Nye, Graesser, & Hu, 2014), scientific

reasoning (Operation: ARIES, Cai et al., 2011; Operation: ARA, Halpern et al., 2012), biology

(GuruTutor, Olney et al., 2012), and electronics (SHERLOCK, BEETLE-II; Lesgold, Lajoie,

Bunzo, & Eggan, 1992; Dzikovska, Steinhauser, Farrow, Moore, & Campbell, 2014;

ElectronixTutor, Graesser et al., 2018).

ITSs offer convenient benefits in a number of contexts, such as those where students greatly

outnumber instructors and therefore may not be able to receive individual attention in a timely

3

manner as needed. ITSs may also interest students who want to learn but are not as comfortable

engaging with material in classroom settings. This is not to say that the purpose of ITSs is to

reassign the role of a teacher, but rather such ITSs may be used to supplement the student in

addition to classroom learning. The instructional efficacy of modern ITSs is comparable to that of

human tutors where large effect sizes on learning gains have been observed (human average d =

.79, computer average d = .78; VanLehn, 2011).

In addition to immediate, automatic feedback and individualized engagement, ITSs are free

of common grading and consistency errors that humans make. Unlike ITSs, humans are prone to

making errors resulting from fatigue, bias, and ordering (Haley, Thomas, Roeck, & Petre, 2007).

ITSs are potentially less costly than human tutors in terms of time invested (Dorça, 2015), and,

depending on the knowledge domain or task, may combat a shortage of available human tutors.

Furthermore, ITSs employ pedagogical strategies and various methods of assessment including but

not limited to multiple-choice questions. These systems may contain adaptive mechanisms, such as

a recommender system that adapts to the student by suggesting topics to cover based on student

performance and engagement.

 ITSs that incorporate natural language processing aim to accomplish human-like language

understanding in order to properly evaluate user verbal contributions and respond in an appropriate

manner. While the concept of multiple-choice may not need additional explanation, conversational

ITSs typically operate by means of automatic grading. Automatic grading in natural language can

be broken down according to question types. The three question types that are observed in

automatic grading are fill in the blank, short answer, and essay.

4

Fill in the blanks are specific questions that have one or few words in correct the answer.

Short answers may be one sentence to one paragraph with the focus being on semantic content

rather than precise wording. In automatic essay grading, responses may be two paragraphs to two

pages. Automatic essay grading considers both style and semantic content, with a balanced

integration of these two fundamental dimensions (Li, Gobert, Graesser, & Dickler, 2018).

Conversational ITSs can be viewed as an interactive form of automatic short answer grading

(Burrows, Gurevych, & Stein, 2015). Aside from AutoTutor, other early conversational ITSs that

incorporate automatic short answer grading are CIRCSIM-Tutor (Evens et al., 2001) and Why2-

Atlas (VanLehn et al., 2002).

Although ITSs can be costly and time-consuming to develop, one recent approach is to

broaden the coverage of topics with existing learning resources that have been already developed.

A prime example of this is ElectronixTutor (Graesser et al., 2018), an ITS that integrates multiple

ITSs and other conventional learning resources to teach a curriculum of electrical engineering to

students. The integration of multiple ITSs and conventional learning resources empowers

ElectronixTutor to have multiple pedagogical strategies to teach students. These learning resources

include AutoTutor, Dragoon (VanLehn, Wetzel, Grover, & van de Sande, 2016), Learnform

developed by BBN/Raytheon, and questions adopted from BEETLE-II (Dzikovska et al., 2014).

Additionally, ElectronixTutor offers topic summaries and the Navy Electronics and Electricity

Training Series that electronics trainees read in the Navy.

This thesis focused on assessment of students’ verbal input to electronics questions asked in

the AutoTutor learning resource. For AutoTutor to properly respond to students in an intelligent

5

manner, it must evaluate student input with sufficient accuracy. AutoTutor’s assessment of student

input is based on semantic matching, which compares student responses to one or more expected

answers. This thesis analyzed a sample of responses (n = 5202) that were crowd sourced from

Amazon Mechanical Turk (AMT) workers. Crowd sourcing participants offers convenience when

collecting large data samples and/or searching for participants in a target population that is small,

scattered, or difficult to assemble physically based on location.

In summary, there was an assessment of the computational linguistics algorithms used to

automatically compute semantic matches in student responses to questions. Student responses were

paired with the ideal answer to the main question as well as to each of the expectations (i.e., correct

sentence-like parts of an ideal answer) to the question. For example, a response to a question with

three expectations is broken down into four response pairs. One pair for the ideal answer, and there

is an additional one for each expectation. In addition, we compared the system’s evaluations to

those of subject matter experts.

Conversations in the AutoTutor Resource in ElectronixTutor

AutoTutor teaches by holding a conversation with the student in natural language (Graesser,

2016; Graesser, 2020). AutoTutor asks students questions and guides them to an expected answer

through conversations with the goal of probing students for concepts and ideas that they may know,

but do not initially articulate in their answers to questions. AutoTutor helps the student actively

construct an answer to the question by collaboratively improving on the answer in a turn-based

conversation similar to human tutors (Graesser et al., 2012). When human tutors ask a question to

students, they anticipate and monitor expectations and misconceptions (common incorrect answers)

6

associated with the question.

AutoTutor’s Expectation and Misconception Tailored (EMT) Dialogue models the

knowledge of the student. AutoTutor matches the student responses to a pre-defined list of

expectations using RegEx and LSA (as defined later). The student response is compared to the

ideal answer for the question, or to each expectation in the question. In this data set, we can

observe questions with as little as one expectation, or as many as five expectations. The following

is an example of a question in ElectronixTutor, the ideal answer, and a breakdown of the ideal

answer into expectations. The following example contains four expectations:

Main Question: What are the I-V characteristics related to the threshold and

breakdown voltage of a real diode compared to an ideal diode?

Ideal Answer: An ideal diode has a threshold voltage of zero. An ideal diode has no

breakdown voltage. A real diode has a threshold voltage greater than zero. A real

diode has a breakdown voltage less than zero.

Expectation One: An ideal diode has a threshold voltage of zero.

Expectation Two: An ideal diode has no breakdown voltage.

Expectation Three: A real diode has a threshold voltage greater than zero.

Expectation Four: A real diode has a breakdown voltage less than zero.

Typically, as the dialogue progresses, the tutor provides more and more hints and other dialogue

moves to help the learner until the expectation is covered. Feedback is provided to the learner after

7

each dialogue turn. Once an expectation has been covered, the system moves to another uncovered

expectation, or, if all other expectations have been covered, to a summary of the entire answer.

Table 1 provides an example of hints and prompts used in ElectronixTutor. Figure 1 provides the

image that matches with the problem observed in Table 1.

Table 1. Hints and prompts for the expectation “An ideal diode has a threshold voltage of zero.”

Question Type Question Correct Answer

Hint Consider the I-V voltage

parameters. Why does the ideal

diode conduct current

immediately after the forward

voltage is applied to it?

Because it has a

threshold voltage of

zero.

Hint Look at the figure on the left.

What specific voltage cut-off

point does the origin represent for

the forward bias voltage?

The threshold

voltage of the ideal

diode.

Prompt An ideal diode starts conducting

immediately when the applied

forward voltage crosses which

zero-valued voltage of the diode?

The threshold.

Prompt Which diode has a threshold

voltage of zero?

The ideal.

Prompt The threshold voltage for an ideal

diode is equal to what?

Zero.

8

Figure 1. Pictured above are the I-V characteristics of an ideal and real diode.

In this thesis, the sole focus is on the assessment of user responses paired to the ideal answer of the

main question and each of the expectations in the question.

Assessment of User Input

AutoTutor’s dialogue is driven by semantic matching. In order for AutoTutor to properly

respond in conversation, it must be able to meaningfully assess student verbal contributions.

AutoTutor assesses student contributions using two matching algorithms, Latent Semantic Analysis

(LSA) and Regular Expressions (RegEx). LSA is a natural language processing application used in

information retrieval and information extraction. LSA finds relationships between a set of

documents and the relevant terms contained in the set of documents. LSA in AutoTutor can be

thought of as an assessment of how on topic a student response is. RegExes in AutoTutor are text

strings that represent content words we expect to see in student responses. These strings were

written at a symbolic level with options to account for synonyms, misspellings, and word ordering

as they relate to the expected content words

9

Regular Expressions

AutoTutor’s semantic matching evaluations incorporates regular expressions (Jurafsky &

Martin, 2008). Regular expressions are text strings which define expectations represented in

AutoTutor. These text strings are used to calculate semantic matches between a student response

and an expectation. A RegEx string is a symbolic representation that specifies a set of content

words in a text description that may or may not have ordered elements and that may or may not be

structured compositionally (i.e., one structure embedded in another structure).

In the ElectronixTutor application the RegEx expressions were a set of content words in an

expectation, as specified shortly. One RegEx score for semantic matches was obtained by

calculating the proportion of word expressions in the RegEx for an expectation that is matched to

the words in the student’s verbal contribution. For example, if a RegEx string for an expectation

represents 4 word expressions and a student only provides 3 in the body text of their answer, then

the RegEx score would be computed as ¾, or .75. The efficacy of RegEx in applications such as

these is heavily contingent on the robustness of the RegEx expression used. That is, the quality of a

RegEx depends on how explicitly and thoroughly the expressions are written.

RegEx allows for increased flexibility in recognizing student input in three ways. First, they

can account for common misspellings (e.g., “sou?r[cs]\w*” would capture “source”, “sourse”

“sorce”, etc). Second, regular expressions can account for anticipated synonyms (e.g., “X will

decrease”, while the content word is “decrease” can effectively be captured using synonyms

“drop”, “lower”, “smaller”, etc.). Third, they also can handle complex student responses. For

example, “X will increase, and Y will decrease” can be expressed by the combination of “X.*Y,

10

increase.*decrease” and “Y.*X, decrease.*increase”. This also captures “Y will decrease and X

will increase”, but does not necessarily capture “X will decrease and Y will increase.” Thus,

regular expressions capture keywords, synonyms, and complex structures, and common

misspellings. In contrast, LSA compares the semantic similarity of the student’s answer to the good

answer in a very different way, which is especially helpful in recognizing how related user

responses are to a given topic based on content word relevance.

Latent Semantic Analysis

LSA (Landauer, McNamara, Dennis, & Kintsch, 2007) is distributional semantics technique

for assessing the similarity of pairs of texts expressed in natural language. “Chair” and “table”, for

example, often appear in the same documents and, as such, have high semantic similarity. The LSA

algorithm measures the similarity between a students’ input and a good answer (expectation) in the

form of a match score from 0 to 1. The good answer for any given question is identified by subject

matter experts in the knowledge domain.

LSA spaces are made by combining a classical vector space model with a two-mode factor

analysis, Singular Value Decomposition (SVD). SVD is a linear algebraic concept that factors a

real (complete) matrix. A bag-of-words (BOW) representation forms a set of texts. BOW models

are simplified models of text documents represented as multisets of the words contained in the text.

After parsing text and performing the SVD, the BOW representation can be modified with a Term

Frequency-Inverse Document Frequency (TF-IDF) matrix and fit into a vector space which

represents the semantic field or semantic space. TF-IDF is intended to indicate the relevance of a

word to a document within a corpus. Term frequency can be computed as:

11

𝒕𝒇𝒕,𝒅 =
𝒏𝒕,𝒅

𝒕𝒆𝒓𝒎𝒔 𝒊𝒏 𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕

where n is the number of times a term (t) occurs in the document (d). So, each individual term and

each document would have its own term frequency. Inverse document frequency can be computed

as:

𝒊𝒅𝒇𝒕 = 𝐥𝐨𝐠
𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒄𝒐𝒓𝒑𝒖𝒔

𝒅𝒐𝒄𝒖𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒊𝒏𝒈 𝒕

From here we can compute the TF-IDF for all words contained in the corpus where words with

higher scores are more important than words with lower scores. So, TF-IDF can be computed as:

(𝒕𝒇_𝒊𝒅𝒇)𝒕,𝒅 = 𝒕𝒇𝒕,𝒅 ∗ 𝒊𝒅𝒇𝒕

Semantic fields in this context mirror the semantic structure extracted from the original corpus of

text documents. Once the semantic field representation is obtained, vectors can be constructed in

order to compute similarities between text samples of interest such as an ideal answer and a student

response.

Such LSA spaces can be utilized to compute semantic similarity, in our case the semantic

similarity between the student’s response to an ideal answer or expectation. The metric of

similarity is a cosine match score from -1 to 1, with 0 representing no semantic similarity and 1

representing a perfect similarity between the student response and the ideal answer or expectation

by virtue of the constructed LSA space. Given two vectors (X and Y), we can compute the cosine

similarity:

12

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚 = 𝐜𝐨𝐬(𝜽) =
𝑿 ∗ 𝒀

‖𝑿‖‖𝒀‖
=

∑ 𝑿𝒊 𝒀𝒊
𝒏
𝒊=𝟏

√∑ 𝑿𝒊
𝟐𝒏

𝒊=𝟏 √∑ 𝒀𝒊
𝟐𝒏

𝒊=𝟏

Cosines range from -1 (opposite) to 1 (exact or same). However, the cosine similarity or match

score between two bodies of text (i.e. an ideal answer and a student response) in this context

functionally ranges from 0 to 1 as a result of TF-IDF weighting where TF-IDF matrix term

frequencies will never be negative. A student response to a question in AutoTutor that yields an

LSA score of .9 has high semantic similarity and is therefore considered to be highly related to the

topic, whereas a student response to a question in AutoTutor that yields an LSA score of .1 or .2

has a low degree of semantic similarity and is considered off topic. A 0 score indicates total

dissimilarity according to the model and negative match values will not occur.

 The most commonly used LSA space, the TASA LSA space (Touchstone Applied Science

Associates, Inc.; Ivens & Koslin, 1991; Landauer et al., 2007) uses a variety of news articles,

novels, and other texts to create a corpus of relevant words and documents. The TASA space is

regarded as a general English language LSA space. For the purpose of this research, rather than

using the popular TASA LSA space, an Electronics LSA space was developed by creating a corpus

of texts from electronics manuals and relevant curriculum materials. An LSA space trained on a

specific subject (i.e. LSA spaces trained on electronics for the purpose of grading student quiz

answers in an electronics class) is expected to assess student input more accurately and minimize

false alarms attributable to the use of general English language terms. In the following section, we

discuss the most current version of the customized electronics corpus and LSA space that are used

in this research.

13

Optimization of Computer Combination Model

 One goal of using computer models to assess student input is to identify and utilize a model

that assesses student verbal contributions (e.g. grading an open-ended student response to a quiz

question) similarly to human subject-matter experts. In this context, we can assume that higher

agreement between human subject-matter experts and similar agreement between subject-matter

experts and the computer indicates a properly functioning model for the assessment of verbal

contributions. By computing the agreement between human judges and the computer, we can

compare it to agreement between human judges for a relative understanding of the performance of

the computer model. We view these agreement observations relative to previous versions of the

computer model (Carmon et al., 2019) or similar computer models used in similar contexts. In

order to optimize the computer model and improve the agreement between humans and the

computer, we should modify the build of the LSA space whose output represents the semantic field

of the topic (i.e. electronics). Further, we should consider all possible values of the discrimination

threshold.

LSA Model Specification

 In order to optimize the computer combination model for semantic matching in the grading

of student responses, we need to address the LSA space used in the combination. LSA is the one

semantic component of the model, and RegEx being the other. RegEx can be written manually by

experts to accommodate misspellings and also semantic variation (e.g. synonyms, functionally

comparable words in a given context), but to a lesser extent than LSA. In this context, RegEx

expressions can be viewed primarily as a lexical component where words in the student response

14

are being matched to the content words that define the RegEx for each ideal answer. Any synonym

that is recognized by a RegEx string is considered a semantic extension of a lexical item.

A statement can sometimes be semantically true even though it has no match to semantic

extensions of a lexical item (as defined by a RegEx). Assessing these types of statements for

relevance to an ideal answer is appropriately handled by LSA. For example, imagine a photograph

of an exceptionally tall man and being given the instructions to talk about the man’s stature. Let us

assume that the ideal answer is “The man is tall.” Regular expressions may offer expected semantic

extensions (i.e. synonyms) of “tall” such as big, large, long, lengthy, etc. So, a student could say

“The man is large”, which would still satisfy the lexical item “tall” for RegEx. However, if the

student responded, “You could tell by his stature that he was a natural-born basketball player”, then

RegEx would not satisfy the lexical item in the context.

The student is clearly suggesting that the man is tall and therefore, the student’s statement is

semantically like the ideal answer. However, the language contained unforeseen or unaccounted for

semantic extensions of the lexical item “tall”. Running the student basketball answer against the

ideal answer and computing the cosine similarity between those two bodies of text using an

appropriately trained LSA space (e.g. LSA trained on sports texts with documents about typical

physical characteristics of basketball players) is much more likely to return a helpful match value.

For this reason, it is important to modify the build of the LSA space as to increase the

appropriateness of LSA’s semantic field representation for a given topic.

In this context, we can modify the LSA space in ways to increase the appropriateness of the

LSA space for a given topic (i.e. electronics). Topic appropriateness for an LSA space can be

15

encouraged through proper selection and structuring of corpus materials as well as modification of

topic/dimension frequency and content. An LSA space that is appropriate for a topic such as

electronics in this context should yield more precise agreement with subject-matter expert ratings

than an off-topic LSA space (e.g. sports LSA space).

 When creating a corpus to train an LSA space, it is necessary to select relevant corpus

documents as to create a semantic representation that is appropriate for the target application and

topic. For example, for an electronics LSA space trained to grade student short answers in a

beginners’ electronics class, it may be appropriate to create a corpus made from beginner-level

electronics texts such as introduction/fundamentals electronics textbooks or electronics manuals. In

contrast, training an LSA space entirely on fashion magazine articles is less likely to yield as

meaningful a semantic representation as it relates to subject-matter in an electronics class. Apart

from selecting the proper documents to feed into the corpus is the issue of chunk size or relevance.

For any given document (e.g. introductory electronics textbook), the body text is essentially

stripped out and broken down into smaller document sizes, or what will be called chunks, that are

fed into the corpus to train the text model. In this electronics corpus, we typically group chunks by

the paragraph level. This follows the basic assumption that within the body text of these electronics

documents, each paragraph break indicates the end of one topic and beginning of a new topic or

sub-topic. For this reason, each chunk in the electronics corpus ranges from one to three

paragraphs.

Customized Corpora for Training Subject-specific LSA Spaces

Previously, Carmon et al. (2018; 2019) used an LSA space trained on a corpus of

16

indeterminate electronics documents to examine the agreement between human judges and the

computer. In the current study, computer judgement is still represented by a model that combines

RegEx and LSA, however, we combined the same RegEx with a new LSA space trained on a

carefully selected corpus comprised of electronics and physics documents. Physics texts were

added to the model as some believe that physics and electrical engineering may share some overlap

in subject-matter and application. In fact, certain subfields of physics interface with subfields of

engineering (e.g. relationship between optics/photonics and electrical engineering). The physics

texts also appear to slightly improve model performance regarding F1 and Cohen’s Kappa metrics.

In addition to 32,000 text chunks (roughly one to three paragraphs per text chunk) worth of

physics materials, the Carmon Electronics corpus includes 24 volumes of Navy Electrical

Engineering Training Series (NEETS) manuals, three introduction to electronics text books, two

electrical engineering handbooks, three sets of course notes from introductory electrical

engineering courses, three electronics fundamentals manuals, one AC-DC power supplies manual,

and five circuitry textbooks of varying degrees of complexity (i.e. ranging from beginner’s level

circuitry to more advanced circuitry). After raw texts were extracted from the documents and

chunked, the corpus contains roughly 80,000 chunks and over 12 million words. Additionally, the

current study assumed 310 topics or dimensions from the corpus of 12 million words. This 12

million word corpus satisfies the criterion laid out by Landauer, McNamara, Dennis, & Kintsch

(2007) which suggests as a rule of thumb that LSA spaces used in tasks such as automatic grading

should be trained on a corpus of no less than 10 million words. The new corpus and LSA space

were created in order to optimize model performance, and indeed, the combination model

containing the newer LSA space used in the current study ended up agreeing more with human

17

subject-matter experts than did the combination model containing the previously used LSA space

from Carmon et al. (2018; 2019).

Model Simulation for Optimizing Agreement

After the RegEx threshold was set and the LSA space had been modified and trained on the

customized electronics corpus, we made a simulation in Python. To obtain performance metrics for

model performance, raw scores from LSA and RegEx were coded into 1’s and 0’s in comparisons

to human judge ratings. When analyzing human and computer decisions, we computed confusion

matrices that also yielded precision, recall, F1 measure, Cohen’s kappa, and d’. Each observed

performance metric was computed based on a single discrimination threshold decided upon for

each RegEx and LSA.

In the simulation, we produced one analysis nested within a for-loop that simulates each

value of LSA’s discrimination threshold from 0 to 1 in thousandths (i.e. .001, .002, .003; all the

way to .999) and outputs each set of performance metrics. So, by simulating a thousand values of

the LSA discrimination threshold, we get a look at a thousand different sets of performance

metrics. By doing this, we can search the highest performance metric value represented for any

target statistic according to stringent, intermediate, and lenient thresholds. In this study we

optimize thresholds for the highest possible F1 measure values, but the simulation can also be

modified to identify highest measures of Cohen’s kappa, or d’ assuming any given set of answer

data with human judgements. Annotated Python code for the simulation can be found in the

Appendix section of the paper.

18

Current Study

This thesis assessed the quality of the semantic matches between student input and expected

responses in AutoTutor. Previously, there was a higher degree of agreement between human judges

(κ = .699, n = 194) than between AutoTutor’s semantic match scores and humans (κ = .493, n =

194) (Carmon, Morgan, Hampton, Cai, & Graesser, 2018) when only stringent thresholds of

matching were considered, and when standard computational linguistics metrics (i.e., precision,

recall, F-measures) were not calculated. However, models in the current study included these

standard computational linguistics metrics. Also, the current study observed AutoTutor semantic

matching scores across two additional thresholds rather than observing the stringent threshold only.

The three thresholds were considered for assessing user input in the current study: Stringent (S),

Intermediate (I), and Lenient (L). These categories of threshold will be explained more in the

Method section.

Ideally, the ranges of agreement would conform to similar studies that used natural language

processing methods to assess user input or classify response ratings in different knowledge

domains (e.g., Gautam, Swiecki, Shaffer, Graesser, & Rus, 2017), where precision reached 96%,

and recall 78%. Precision is the proportion of computer responses that that signify a correct match

(between the student response and the expectation) that are also deemed as a correct match

according to human judgments. In contrast, recall, or sensitivity, is the proportion of human

judgments of correct matches that are also computed as correct matches by the computer. Precision

and recall are explained and contextualized more in the Analysis section.

One plausible hypothesis is that RegEx and LSA should yield a positive correlational

23

o A rating of 2 indicates that the answer is not on topic or contains metacognitive

language.

o A rating of 3 indicates that the answer is on topic, but completely incorrect.

o A rating of 4 indicates that the answer is mostly incorrect but contains a small

degree of truth value.

o A rating of 5 indicates that the answer is mostly correct.

o A rating of 6 indicates that the answer seems ideal.

 All user responses in the rating tool were sorted into tabs according to item. The tool was

designed to simplify and speed up the process of rating for judges as opposed to judges interacting

with the raw data in CSV or XLS format. The procedure section offers a detailed table about the

scoring definitions that the judges used in rating student responses.

LSA and RegEx scores of user responses were computed for comparison to judge ratings. To

compare the judge ratings to the computer, we observed three thresholds for humans’ ratings. The

three thresholds to observe are stringent, intermediate, and lenient. We selected each threshold

value based on the simulation program written in Python that considered every possible value of

the LSA discrimination threshold to identify the optimal threshold value where highest F1 measure

is observed in stringent, intermediate, and lenient threshold categories.

For the stringent human thresholds, human judgment between 1 and 5 was coded as a 0 and

24

a score of 6 as a 1. The stringent threshold for humans considers student responses that the judges

consider to be correct and complete (i.e. a rating of 6). The stringent threshold for computers

consists of raw scores at or above the .75 threshold for RegEx, or .892 for LSA and was be coded

as a 1, whereas below was coded as a 0. These stringent computer thresholds apply to RegEx only,

LSA only, and RegEx and LSA combination (RegEx threshold is met or LSA threshold is met).

For the intermediate human thresholds, human judgment between 1 and 4 was coded as a 0,

and 5 or 6’s as 1. The intermediate threshold for computer scoring considers a RegEx threshold

that is placed at .5, and one for LSA at .769. These intermediate computer thresholds apply to

RegEx only, LSA only, and RegEx and LSA combination (RegEx threshold is met or LSA

threshold is met).

In the lenient human threshold, human judgment between 1 and 3 was coded as a 0 and 4–6

as 1. The lenient threshold for humans considers any student responses with varying degrees of

truth value as 1. The lenient threshold in computer scoring considered a RegEx threshold that is

placed at .33, and one for LSA at .494. These lenient computer thresholds apply to RegEx only,

LSA only, and RegEx and LSA combination (RegEx threshold is met or LSA threshold is met).

So, analyzing agreement between human judgement and the computer (RegEx only) across 3

thresholds yielded a 3 x 3, or 9 statistical observations. Another 9 observations occurred between

human judgement and computers with the only comparison being that the computer threshold

observed the LSA only condition instead of RegEx only. A third analysis repeated this 3 x 3 design

where the computer observed RegEx and LSA combination thresholds rather than RegEx only and

LSA only. A final analysis repeated the 3 x 3 design for Judge 1 and Judge 2.

25

A RegEx bank of relevant electronics terms created by a team of university researchers

provided easier RegEx application to each of the 118 items in the system. The bank contains the

semantic field of content words associated with all items in the system. When creating AutoTutor

items in ElectronixTutor, researchers may refer to the bank for word expressions that have been

created, as they may be represented in ideal answers and expectations for multiple items in the

system. The RegEx bank for the electronics items allowed for word expression matches of

relevant terms in the body text of the user’s response when compared to the ideal answer or

expectation.

A RegEx expression is written so that it allows for flexible user response comprehension in a

few ways. The RegEx written for these items allows for common misspellings, complex student

responses (word ordering), and commonly recognized synonyms. Additionally, this research used

an electronics LSA space rather than the TASA LSA space, the most popular LSA space for

general English language. LSA and RegEx can be computed using a custom-made tool where the

input is a user response and the outputs are computed scores for RegEx and LSA. These scores

represent the semantic matching capabilities of AutoTutor, and by using these computed semantic

matching scores, we compared AutoTutor’s performance to that of a human judge.

Procedure

The data had 219 unique AMT workers who answered 118 questions asked by AutoTutor in

ElectronixTutor. An AMT worker answered only a subset of the 118 questions, thus many

responses from different items were collected from repeat AMT workers. AMT workers responded

to these questions in an open-ended fashion, saying as much or as little as needed in order to

26

answer the questions asked. Each question received up to 20 user responses for a corpus of roughly

2350 responses to the main questions. Of the 2350 collected responses to the main question, each

response was paired with the main question and each expectation to the main question, resulting in

5202 (n=5202) total pairings that were used as the sample units for the analyses. Two subject-

matter experts independently rated the user responses on a scale ranging from 1–6. See Table 2 for

a description of the scoring values used by judges.

Table 2. Scoring values used by human judges rating student responses to electronics questions.

In selecting participants for the data collection process, AMT workers were asked to describe

their background in electronics and answer questions to the best of their ability without any help

(e.g. internet searches, reading materials, asking other individuals). Workers were also required to

complete the pre-screen (described in the Materials section) to qualify as eligible. Workers were

compensated $1 for each question answered. Compensating $1 per question typically pays a user

$6 per HIT with the exception of the one HIT that only contained 4 questions.

27

Chapter 3

Analysis

The analyses computed LSA and RegEx scores for student responses, whereas two subject-

matter experts also judged each response. These analyses aimed to explore the relationship between

regular expressions and LSA, interrater agreement between the two judges, and agreement between

responses in human judgment and AutoTutor semantic match scores.

This thesis observed agreement by calculating Cohen’s kappa, precision and recall scores,

and d’ (“d prime”) scores from signal detection theory. The scores for each metric were calculated

between human judges, and between human judges and AutoTutor’s semantic matches according

to LSA, RegEx, and both. These analyses explain the data using this variety of metrics in order to

appeal to multiple audiences. In this thesis, the concept of explaining the data for multiple

audiences was informed by Graesser, Wiemer-Hastings, Kreuz, Wiemer-Hastings, and Marquis

(2000). Explaining the results for researchers in computational linguistics and psychology rather

than only reporting results in terms of inter-rater agreement (Cohen’s kappa) offers the benefit of

reaching a broader audience.

The first performance metric observed in analyses is Cohen’s kappa (κ). Cohen’s kappa

measures inter-rater reliability for categorical items. Cohen’s kappa is regarded as a more robust

measure than a simple percent agreement as it considers the possibility of observations that may

have occurred by chance. Cohen’s kappa is a popular metric in social sciences research. Cohen’s

28

kappa can be calculated as:

𝜿 ≡
𝒑𝒐 − 𝒑𝒆

𝟏 − 𝒑𝒆
= 𝟏 −

𝟏 − 𝒑𝒐

𝟏 − 𝒑𝒆

Where 𝑝𝑜 is accuracy and 𝑝𝑒 is the probability of chance. The analyses calculate κ between human

judges, and between human judges and AutoTutor’s semantic matching mechanism.

Next, the analyses calculate metrics for precision and recall. The metrics for this portion of

the analysis include precision, recall, and F1. Precision and recall are common measurements for

assessing accuracy of information retrieval, classification, and identification tasks in computers. As

stated previously, precision is the proportion of computer responses that that signify a correct

match (between the student response and the expectation) that were also deemed as a correct match

according to human judgments. In contrast, recall is the proportion of human judgments of correct

matches that were also computed as correct matches by the computer.

Precision and recall were calculated in this context using a 2 x 2 matrix where AutoTutor

semantic match represents the predicted condition, and where human judgement represents the true

or observed condition. Each condition contains 2 levels, positive or negative. The matrix only

contains 4 possible outcomes that were factored into precision and recall calculations. These 4

possible outcomes are true positives (TP, alternatively called hits), true negatives (TN, i.e., correct

rejections), false positives (FP, i.e., false alarms), and false negatives (FN, i.e., misses). So,

precision is calculated as:

29

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷

Recall is calculated as:

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

F1 scores are calculated as the weighted average (or harmonic mean) between precision and recall

where:

𝑭𝟏 =
𝟐 ∗ 𝑻𝑷

(𝟐 ∗ 𝑻𝑷) + 𝑭𝑷 + 𝑭𝑵

The last metric that the analyses observed comes from signal detection theory. The metric d’ (“d

prime”), also referred to as the sensitivity index, separates the means of the signal and the noise

distributions, in comparison to the standard deviation of the signal or noise distribution. The metric

d’ can be calculated as:

𝒅′ =
𝝁𝑺𝑰 − 𝝁𝑵

√𝟏
𝟐

(𝝈𝑺𝑰
𝟐 + 𝝈𝑵

𝟐)

Where (SI) represents signal and (N) is noise. These analyses calculate d’ between human, and

between human judges and AutoTutor’s semantic matching mechanism.

30

As previously stated, analyzing agreement between human judgement and the computer

(RegEx only) across 3 thresholds yielded a 3 x 3, or 9 statistical observations. An additional 9

observations were made for LSA only versus human. A third 3 x 3 observation was made for

RegEx and LSA combination versus human, and a final observation was made for Judge 1 versus

Judge 2. The thresholds observed for humans and computers are stringent (S), intermediate (I), and

lenient (L). The following describes stringent thresholds in the RegEx and LSA combination model

for computer (c) and human (h), respectively, where T is threshold, LSA is LSA, and RegEx is RE:

𝑻𝑺𝒄 = 𝟏, 𝑻𝑺𝑳𝑺𝑨 ≥. 𝟖𝟗𝟐 ∨ 𝑻𝑺𝑹𝑬 ≥. 𝟕𝟓

𝒆𝒍𝒔𝒆; 𝑻𝑺𝒄 = 0

𝑻𝑺𝒉 = 𝟏, 𝒓𝒂𝒕𝒊𝒏𝒈 > 𝟓

𝒆𝒍𝒔𝒆; 𝑻𝑺𝒉 = 𝟎

The next expression describes intermediate thresholds for computer (c) and human (h),

respectively:

𝑻𝑰𝒄 = 𝟏, 𝑻𝑰𝑳𝑺𝑨 ≥. 𝟕𝟔𝟗 ∨ 𝑻𝑰𝑹𝑬 ≥. 𝟓

𝒆𝒍𝒔𝒆; 𝑻𝑰𝒄 = 0

31

𝑻𝑰𝒉 = 𝟏, 𝒓𝒂𝒕𝒊𝒏𝒈 ≥ 𝟓

𝒆𝒍𝒔𝒆; 𝑻𝑰𝒉 = 𝟎

The last expression describes lenient thresholds for computer (c) and human (h), respectively:

𝑻𝑳𝒄 = 𝟏, 𝑻𝑳𝑳𝑺𝑨 ≥. 𝟒𝟗𝟒 ∨ 𝑻𝑳𝑹𝑬 ≥. 𝟑𝟑

𝒆𝒍𝒔𝒆; 𝑻𝑳𝒄 = 0

𝑻𝑳𝒉 = 𝟏, 𝒓𝒂𝒕𝒊𝒏𝒈 ≥ 𝟒

𝒆𝒍𝒔𝒆; 𝑻𝑳𝒉 = 𝟎

Additionally, a secondary analysis repeated this 3 x 3 design twice more where there was a

focus on RegEx and LSA models independently, rather than a combination of the two. Further, this

thesis included two more 3 x 3 observations. One where agreement between humans and the

computer (RegEx and LSA combination) was calculated and one where the same was done

between judges. By completing these analyses, we can interpret the statistics to determine whether

or not any agreement observations significantly differed between human judges or between humans

and the computer. The differences will be observed across the three thresholds mentioned, and

human judgement will be compared against RegEx and LSA combination, RegEx only, and LSA

32

only, respectively.

For interpreting differences between observed agreements (human versus RegEx and LSA

combination) we refer to a simple difference in scores for Cohen’s kappa. Cohen’s kappa is

calculated from 0 to 1, where 1 is equal to perfect agreement observed. When interpreting

Cohen’s kappa, 𝜿 values are sometimes classified into five somewhat arbitrary categories that

Cohen identified: poor (low) value being less than 0.20, fair between 0.20 and 0.30, moderate

between 0.30 and 0.40, substantial (good) between 0.40 and 0.70, and outstanding agreement

values observed between 0.70 and 1.00.

By adhering to these interpretations of κ values and using them as guidelines, we assume

that any two single κ values with an observed difference of .15 or greater can be considered to have

notable differences, as they have at least differed by roughly 1 Cohen’s kappa agreement category

defined above.

Chapter 4

Results

We began by examining the non-parametric relationship between RegEx and LSA using a

Spearman’s correlation. As expected, we observed a moderate, positive relationship between the

two, ρ (5202) = .471. To compare human judges to the computer, all ratings were coded as either a

1 (positive) or a 0 (negative), and were compared across stringent, intermediate, and lenient

thresholds. Before addressing the data below, refer to Table 3. Table 3 lists all F1 measure scores at

the aggregate level between judges and between the judges and the computer.

33

Table 3. A breakdown F1 measure agreement between the computer and human judges, and

between human judges according to stringent (S), intermediate (I), and lenient (L) threshold

conditions.

F1 Measure Agreement Between Computer and Human Judges

Condition F1 Measure

 Judge 1 Judge 2

S: LSA .368 .300

I: LSA .466 .470

L: LSA .555 .561

S: RegEx .444 .509

I: RegEx .520 .542

L: RegEx .6 .579

S: RegEx-LSA Combination .526 .462

I: RegEx-LSA Combination .548 .524

L: RegEx-LSA Combination .589 .620

S: Between Judges .532

I: Between Judges .599

L: Between Judges .653

Note. At the aggregate level, F1 measure values in the combination model match the values

between humans more closely than either of the stand-alone models.

Aggregate Data Analyses

Aggregate: Between Judges

We analyzed agreement of the human judge ratings on responses from AMT users using

Cohen’s kappa, precision and recall measures, and d’ from signal detection theory. The interrater

reliability between judges in the stringent threshold (S) was good, κ = .456, n = 5202, while

precision reached .467 and recall .618, with F1 = .532, d’ = 1.593. According to intermediate (I)

thresholds, the interrater reliability between judges was good and slightly higher than judge

agreement for stringent thresholds, κ = .466, n = 5202. In the intermediate threshold between

34

judges, precision reached .636 and recall .565, with F1 = .599, d’ = 1.36. The interrater reliability

between judges in lenient (L) thresholds was similar, κ = .460, n = 5202, while precision reached

.710 and recall .604, with F1 = .653, d’ = 1.274.

Aggregate: LSA Versus Judges

For the stringent (S) human threshold, human judgment between 1 and 5 was coded as a 0

and a score of 6 as a 1. For stringent computer thresholds in LSA, a raw score at or above the .495

threshold was coded as a 1, whereas below was coded as a 0. All optimal thresholds for the LSA

model were revealed through the program which simulates a thousand values of the discrimination

threshold and compares it to human judge ratings. The reliability between LSA and the first judge

was low, κ = .195, n = 5202, whereas the reliability between LSA and the second judge was even

lower, κ = .150, n = 5202. When the model was compared with the first judge, precision reached

.547, and recall .277, F1 = .368, d’ = .649. For the second judge, precision reached .542, and recall

.207, F1 = .300, d’ = .575.

For the intermediate (I) human threshold, human judgment between 1 and 4 was coded as a 0

and 5 or 6’s as 1. For intermediate computer thresholds in LSA, the threshold was placed at .423.

The reliability between LSA and the first judge was fair, κ = .241, n = 5202, whereas the reliability

with the second judge was similar, but slightly lower, κ = .223, n = 5202. When the model was

compared with the first judge, precision reached. 631, and recall .369, F1 = .466, d’ = .762. For the

second judge, precision reached .592, and recall .390, F1 = .470, d’ = .636.

For the lenient (L) human thresholds, human judgment between 1 and 3 was coded as a 0

and 4–6 as 1. For lenient computer thresholds in LSA, the threshold was placed at = .362. The

35

reliability between LSA and the first judge was fair, κ = .272, n = 5202, whereas the reliability

between LSA and the second judge was again similar, but lower, κ = .236, n = 5202. When the

model was compared with the first judge, precision was .673, while recall reached .472, F1 = .555,

d’ = .755. For the second judge, precision was .621, while recall reached .511, F1 = .561, d’ = .618.

Aggregate: RegEx Versus Judges

For the stringent (S) human thresholds, human judgment between 1 and 5 was coded as a 0

and a score of 6 as a 1. For stringent computer thresholds in RegEx, a raw score at or above the .75

threshold was coded as a 1, whereas below .75 was coded as a 0. We examined agreement between

human judge ratings and RegEx. The reliability between RegEx and the first judge was moderate, κ

= .366, n = 5202, whereas the reliability between RegEx and the second judge was good, κ = .428,

n = 5202. When the model was compared with the first judge, precision reached .448, and recall

.440, F1 = .444, d’ = 1.487. For the second judge, precision reached .450, and recall .585, F1 =

.509, d’ = 1.275.

For the intermediate (I) human thresholds, human judgment between 1 and 4 was coded as a

0 and 5 or 6’s as 1. For intermediate computer thresholds in RegEx, the threshold was placed at .5.

The reliability between RegEx and the first judge was fair, κ = .313, n = 5202, whereas the

reliability with the second judge was similar but higher, κ = .362, n = 5202. When the model was

compared with the first judge, precision reached .607, and recall .455, F1 = .520, d’ = 1.07. For the

second judge, precision reached .677, and recall .452, F1 = .542, d’ = .882.

For the lenient (L) human thresholds, human judgment between 1 and 3 was coded as a 0

and 4–6 as 1. For lenient computer thresholds in RegEx, the threshold was placed at = .33. The

36

reliability between RegEx and the first judge was fair, κ = .306, n = 5202, whereas the reliability

with the second judge was again similar, κ = .307, n = 5202. When the model was compared with

the first judge, precision was .679, while recall reached .545, F1 = .600, d’ = .870. For the second

judge, precision was .713, while recall reached .487, F1 = .579, d’ = .815.

Aggregate: RegEx/LSA Combination Versus Judges

For the stringent (S) human thresholds, human judgment between 1 and 5 was coded as a 0

and a score of 6 as a 1. For stringent computer thresholds in RegEx and LSA, a RegEx score at or

above the .75 threshold or LSA at or above .892 was coded as a 1, whereas below was coded as a

0. We examined agreement between human judges and RegEx/LSA Combination. The reliability

between RegEx/LSA Combination and the first judge was good, κ = .446, n = 5202, whereas the

reliability between RegEx/LSA Combination and the second judge was moderate and lower, κ =

.384, n = 5202. When the model was compared with the first judge, precision reached .479, and

recall .584, F1 = .526, d’ = 1.508. For the second judge, precision reached .482, and recall .444, F1

= .462, d’ = 1.312.

For the intermediate (I) human thresholds, human judgment between 1 and 4 was coded as a

0 and 5 or 6’s as 1. For intermediate computer thresholds in RegEx, the threshold was placed at .5,

and for LSA, .769. The reliability between RegEx/LSA Combination and the first judge was

moderate, κ = .365, n = 5202, whereas the reliability with the second judge was similar, but slightly

lower, κ = .311, n = 5202. When the model was compared with the first judge, precision reached

.710, and recall .446, F1 = .548, d’ = 1.096. For the second judge, precision reached .633, and

recall .448, F1 = .524, d’ = .883.

37

For the lenient (L) human thresholds, human judgment between 1 and 3 was coded as a 0

and 4–6 as 1. For lenient computer thresholds in RegEx, the threshold was placed at .33, and for

LSA, .494. The reliability between RegEx/LSA Combination and the first judge was fair, κ = .291,

n = 5202, whereas the reliability with the second judge was again similar, κ = .292, n = 5202.

When the model was compared with the first judge, precision was .809, while recall reached .463,

F1 = .589, d’ = .939. For the second judge, precision was .772, while recall reached .519, F1 =

.620, d’ = .850. At the aggregate level, F1 and d’ for combination models reached values closest to

those between judges in all three threshold conditions. Agreement values between the combination

model and judges were higher than between either the LSA only model versus judges or the RegEx

only model versus judges. While RegEx alone agrees with humans more than LSA alone, the

combination model agrees more with humans than both stand-alone models. This suggests that by

pairing RegEx and LSA, there is added benefit in a combination model compared to using each

model separately.

Repeated Measures ANOVAs

Repeated Measures: Between Judges

Figure 2 shows the cell means of a 3 x 3 repeated measures design conducted to compare

Judge 1 and. Judge 2 on F1 measure agreement in stringent (S), intermediate (I), and lenient (L)

threshold conditions. A repeated measures analysis of variance (ANOVA) was conducted on the F1

agreement scores where the unit of analysis was the item (n = 118). There was a significant main

effect of Judge 1, F (2, 234) = 27.12 p = .001, η2 = .188, and of Judge 2, F (2, 234) = 30.617, p =

.001, η2 = .207, with a significant interaction between human judges, F (2, 234) = 46.96, p = .001,

38

η2 = .286. Here, F1 agreement on stringent items (items rated 6 by judges) was lowest, and lenient

agreement was highest. Agreement on the stringent threshold is practically indistinguishable from

agreement between Judge 1 stringent, and Judge 2 intermediate. Judges agreements in intermediate

and lenient thresholds appear to show more distinct categorization.

Figure 2. Mean F1 measure as a function of the thresholds of Judge 1 and Judge 2 where S is

stringent, I is intermediate, and L is lenient.

Repeated Measures: LSA Versus Judges

Figure 3 shows mean F1 scores as a function of stringent (S), intermediate (I), and lenient

(L) thresholds of LSA versus Judge 1 in a 3 x 3 repeated measures design. An ANOVA was

conducted on the F1 agreement scores where the unit of analysis was the item (question) in

39

AutoTutor (n = 118), as opposed to the expectation unit in an ideal answer, noting that some

questions had multiple expectations. There was a significant main effect of Judge 1, F (2, 234) =

4.352, p = .026, η2 = .036, and a a significant main effect of LSA, F (2, 234) = 42.438, p = .001, η2

= .266, with a significant interaction between LSA and Judge 1, F (2, 234) = 6.11, p = .001, η2 =

.05. F1 measure agreement was highest for LSA lenient in every human judge threshold condition.

Figure 3. Mean F1 measure as a function of the thresholds of Judge 1 and LSA where S is stringent,

I is intermediate, and L is lenient.

Additionally, Figure 4 shows mean F1 scores as a function of stringent (S), intermediate (I),

and lenient (L) thresholds of LSA versus Judge 2 in a 3 x 3 repeated measures design. An ANOVA

40

was conducted on the F1 agreement scores where the unit of analysis was the item (question) in

AutoTutor (n = 118). There was a significant main effect of Judge 2, F (2, 234) = 3.800, p = .042,

η2 = .032, and a significant main effect of LSA, F (2, 234) = 62.360, p = .001, η2 = .348, with

significant interaction between LSA and Judge 2, F (2, 234) = 13.950, p = .001, η2 = .107. Again.

F1 measure agreement was highest for LSA lenient in every human judge threshold condition. By

itself, LSA performs reasonably well in lenient, but not in stringent or intermediate threshold

categories.

Figure 4. Mean F1 measure as a function of the thresholds of Judge 2 and LSA where S is stringent,

I is intermediate, and L is lenient.

Repeated Measures: RegEx Versus Judges

Figure 5 shows mean F1 scores as a function of stringent (S), intermediate (I), and lenient (L)

41

thresholds of RegEx versus Judge 1 in a 3 x 3 repeated measures design. An ANOVA was conducted

on the F1 agreement scores where the unit of analysis was the item (question) in AutoTutor (n =

118). There was a significant main effect of Judge 1, F (2, 234) = 25.530, p = .001, η2 = .181, and a

significant main effect of RegEx, F (2, 234) = 26.390, p = .001, η2 = .184, with a significant

interaction between RegEx and Judge 1, F (2, 234) = 41.010, p = .001, η2 = .260. Here, we continue

to see a trend where lenient F1 value observations are the highest, and stringent and lenient conditions

appear to be more distinct than intermediate conditions.

Figure 5. Mean F1 measure as a function of the thresholds of Judge 1 and RegEx where S is

stringent, I is intermediate, and L is lenient.

42

Additionally, Figure 6 shows mean F1 scores as a function of stringent (S), intermediate (I),

and lenient (L) thresholds of RegEx versus Judge 2 in a 3 x 3 repeated measures design. An ANOVA

was conducted on the F1 agreement scores where the unit of analysis was the item (question) in

AutoTutor (n = 118). There was a significant main effect of Judge 2, F (2, 234) = 10.460, p = .001,

η2 = .082, and a significant main effect of RegEx, F (2, 234) = 59, p = .001, η2 = .335, with a

significant interaction between RegEx and Judge 2, F (2, 234) = 43.55, p = .001, η2 = .271.

Agreement between Judge 2 and RegEx is similar to agreement between Judge 1 and RegEx,

however, agreement on a stringent threshold is less distinct for Judge 2 and RegEx.

Figure 6. Mean F1 measure as a function of the thresholds of Judge 2 and RegEx where S is stringent,

I is intermediate, and L is lenient.

43

Repeated Measures: RegEx/LSA Combination Versus Judges

Figure 7 shows mean F1 scores as a function of stringent (S), intermediate (I), and lenient (L)

thresholds of the RegEx-LSA combination model versus Judge 1 in a 3 x 3 repeated measures design.

An ANOVA was conducted on the F1 agreement scores where the unit of analysis was the item

(question) in AutoTutor (n = 118). There was a significant main effect of Judge 1, F (2, 234) = 18.440

p = .001, η2 = .136, and a significant main effect of Combo, F (2, 234) = 38.500, p = .001, η2 = .248,

with a significant interaction between Combo and Judge 1, F (2, 234) = 48.380, p = .001, η2 = .293.

Here, we see F1 measure agreement values are most comparable in the study to values between

humans. While intermediate thresholds are less distinct, we see distinction in stringent and lenient

threshold agreements. This follows the same trend in all observations where F1 measure agreement

is highest in lenient thresholds and overall lowest in stringent thresholds.

44

Figure 7. Mean F1 measure as a function of the thresholds of Judge 1 and RegEx-LSA combination

where S is stringent, I is intermediate, and L is lenient.

Additionally, Figure 8 shows mean F1 scores as a function of stringent (S), intermediate (I),

and lenient (L) thresholds of the RegEx-LSA combination model versus Judge 2 in a 3 x 3 repeated

measures design. An ANOVA was conducted on the F1 agreement scores where the unit of analysis

was the item (question) in AutoTutor (n = 118). There was a significant main effect of Judge 2, F (2,

234) = 23.500, p = .001, η2 = .167, and a significant main effect of Combo, F (2, 234) = 85.640, p =

.001, η2 = .423, with a significant interaction between Combo and Judge 2, F (2, 234) 4= 62.120, p

= .001, η2 = .347. Here, we follow the same trend as we have seen previously where F1 measure

agreement is highest in lenient and overall lowest in stringent. We see the highest overall F1 measure

45

agreements in the study (aside from between humans) in the lenient computer by lenient judge

threshold observation.

Figure 7. Mean F1 measure as a function of the thresholds of Judge 2 and RegEx-LSA

combination where S is stringent, I is intermediate, and L is lenient.

Chapter 5

Discussion

The first analysis examined the non-parametric relationship between two automated

methods, LSA and RegEx, which provide complementary evaluations using different text features

to assess response relevance. As a result, we expected to see a moderate, positive relationship

between LSA and RegEx which was indeed the case. We expected a moderate, positive

46

relationship because RegEx and LSA share the same purpose of producing match values for user

responses based on response relevance, but they each do so by considering different features in the

text. Thus, a higher correlation of .9 (or closer to 1) would indicate that the use of both methods

together may be redundant, and a much lower correlation would indicate that both are not

measuring the same variable.

Although statistics for Cohen’s kappa were not impressively high, we expected to see a trend

based on results from previous analyses in Carmon et al. (2018; 2019) where agreement between

human judges was consistently higher than between human judges and the computer. In this study,

we observed that trend across all 3 categories of threshold (stringent, intermediate, and lenient).

However, the RegEx/LSA combination model agreed more closely with human judges than either

the RegEx only or LSA only model, or to any other model previously fit to the dataset (Carmon et

al., 2018, Carmon et al., 2019). This is true across multiple performance metrics (F1, ‘d, and

Kappa) reported for the models at the aggregate level Additionally, the same simulation developed

for finding all values of the discrimination threshold can be easily modified to optimize for kappa,

‘d, precision, or recall. In this study, we optimize discrimination thresholds of the combination

model to optimize for F1 measure agreement.

These findings suggest that there may be benefits to human-computer agreement in

automatic short answer grading (ASAG) contexts by using a combination model in rather than

solely relying on RegEx only or LSA only models individually. Also suggested by the findings is

the notion that models can be custom-trained and simulated to optimize relative agreement between

the computer and categorized judge ratings.

47

Based on previous analyses, we expected to see higher agreement in lenient thresholds than

in stringent thresholds. This is generally true apart from Cohen’s kappa. Cohen’s kappa adjusts for

agreement by chance, so in this context, we may expect more lenient thresholds to yield higher F1

agreement, and similar but slightly lower kappa than one would observe in stringent thresholds.

This is rather intuitive, because the more leniency you lend to response appropriateness, the more

likely it is that two or more assessors may display overlapping agreement. For example, in

stringent thresholds, only ratings of 6 (out of 6) displayed by both judges may be considered

agreement, whereas in lenient thresholds, a judge rating of 4 paired with another judge rating of 5

would be considered an agreement. Precision reached .809 in lenient thresholds for response

assessment, but at the expense of yielding lower recall (.463).

In the combination model, we observe F1 measure agreement between humans and the

computer similar to the F1 measure agreements observed between humans. This is true in all three

threshold categories. These F1 measure agreements between humans and the computer are more

similar than any previous model used to assess this response data to date (Carmon et al., 2018,

Carmon et al., 2019). In stringent thresholds, between-human F1 measure agreement was .532, and

human-computer F1 measure agreement reached .526. In intermediate thresholds, between-human

F1 measure agreement was .599, and human-computer F1 measure agreement reached .548. In

lenient thresholds, between-human F1 measure agreement was .653, and human-computer F1

measure agreement reached .620.

As demonstrated in this study, semantic text models for ASAG can be modified in various

ways to optimize agreement. Relevant literature in semantic matching for student response grading

48

typically trains computational models based on 5 holistic response categories (Crossley et al.,

2014), whereas this study details 6 response categories for human raters. For this reason, one

alternative may recode the response data on a categorization scale using judgements of 1–5 in the

future. Using a 5-category scale, the data can be used in preexisting models. However, simulations

for discrimination threshold values show promise in fitting match values in the response data to

atypical response categorization scales for holistic human judge ratings such as 6-category scales

like the one used in this study.

Moving forward, it may be of interest to weight the ratings of first human judge as more

consistent. Although the difference was slight, the first judge (Judge 1) consistently agreed more

closely with the computer than did the second human judge. The agreement between the first

human judge and the computer was generally higher and closer to agreement between-humans in

all three threshold categories observed in analyses.

Ideally, agreement between three or more subject-matter experts (as opposed to two) should

be observed to identify potentially poor or inconsistent human judgement. If agreement between

two judges is consistently high while a third judge has exceedingly low agreement with each other

judge, then it is likely that the third judge is not as reliable which can have negative consequences

for the internal validity of the study. Though agreement is relative in the context, these findings

identify a trend where judges consistently agree more than AutoTutor versus judges across

different levels of thresholds In this case, F1 measure agreement between the computer and

humans is substantially similar to agreement between humans. This offers a valuable framework

for future tests observing new AutoTutor models and the degree to which they may improve. New

49

semantic combination models are not necessarily limited to including LSA and RegEx.

Due to the nature of open-ended responses collected, it is appropriate to analyze main

question and expectations. However, deciding on a length cap for these open-ended responses may

help to avoid false positives in LSA which may be attributed to lengthy responses increasing the

likelihood that relevant terms are used which increase the LSA score while they are not satisfying

the expected answer.

In future studies we may also want to collect similar data on participants that appear in

person and interact with these questions through the AutoTutor system rather than collecting on

AutoTutor materials through AMT. We may sacrifice some sample size, but it is critically

important to see how users interact with the system in an AutoTutor trialogue with hints, pumps,

prompts, conversational agents, and dialogue turns as opposed to assessment of an open-ended user

response made in attempt to only the main question. We may also want to rerun similar analyses on

the data where we modify the length or content of the corpus used to train the LSA space (e.g.

removing physics texts), or the features of RegEx (e.g., removing anticipated synonyms versus

complex student answers, etc.).

A future analysis may use the response data to look at ratings of 1 and 2 to identify whether

the system correctly detects metacognitive language in responses. Successfully distinguishing

partial answers from complete answers and recognizing certain response features such as meta-

cognitive language (represented by a response rating of 2) is necessary in helping the system select

the most appropriate hint or prompt. It is of critical importance that the system correctly and

consistently recognizes these response categories. Additionally, two future analyses, an error

50

analysis and item difficulty analysis, are of immediate interest and show promise in acquiring

necessary and relevant information for this body of research.

An error analysis would explore whether the system is better at detecting correct answers or

incorrect answers in accordance with judge response ratings. In human-computer interaction

contexts, and especially in automatic answer grading, it is important to consider the types of errors

that the system is committing while scoring student answers. The ElectronixTutor system may

commit two types of error, misses or false alarms. In these contexts, we would rather have the

system minimize false alarms or misses? It is not ideal to pass a student answer that should not

have been counted as correct (i.e., a false alarm), but it is also problematic to miss a student answer

when it should have been detected as correct. Rejecting correct student answers may frustrate or

discourage students and cause dropout (Graesser, 2016). Depending on whether correct or incorrect

answers are detected more consistently by the system, it may be justifiable to weight the priority of

either precision or recall on the data.

In the item difficulty analysis, we could explore whether item or question difficulty affects

the degree of agreement between humans or between the computer and humans. We currently are

interested in two approaches in this effort. One can be thought of as a top-down approach, and the

other can be thought of as a bottom-up approach. In the top-down approach, we use an existing

scaling of electronics topics conducted by experts to analyze item difficulty based on knowledge

components in the ElectronixTutor system (Graesser et al., 2018). Using this expert model, we can

observe the relationship between item difficulty and agreement between humans as well as

agreement between the computer and humans. Similarly, we can compare question items that

51

require lengthier answers and reasoning (2-5 expectations) versus knowledge-check questions that

focus on only 1 or 2 expectations. In the bottom-up approach we would observe the relationship

between agreement and item difficulty where item difficulty is informed by average score on each

item within the dataset. This normative definition of item difficulty would consider how learners

perform and vary in answering each individual question.

52

References

Aleven, V., Ogan, A., Popescu, O., Torrey, C., Koedinger, K. (2004). Evaluating the effectiveness

of a tutorial dialogue system for self-explanation. In J.C. Lester, R.M. Vicari, F. Paraguacu

(Eds.), Proceedings of the 7th international conference on intelligent tutoring systems

volume 3220 of lecture notes in computer science (pp. 443–454). Maceio: Springer.

Bloom, B. S. (1984). The 2 sigma problem: the search for methods of group instruction as effective

as one-to-one tutoring. Educational Researcher, 13, 4-16.

Burrows, S., Gurevych, I. & Stein, B. (2015). The Eras and Trends of Automatic Short Answer

Grading. Int J Artif Intell Educ 25, 60–117. https://doi.org/10.1007/s40593-014-0026-8

Cai, Z., Graesser, A. C., Forsyth, C., Burkett, C., Millis, K., Wallace, P., Halpern, D., & Butler, H.

(2011). Trialog in ARIES: User Input Assessment in an Intelligent Tutoring System. In W.

Chen, & S. Li (Eds.), Proceedings of the 3rd IEEE international conference on intelligent

computing and intelligent systems (pp. 429–433). Guangzhou: IEEE Press.

Carmon, C. M., Hampton, A. J., Morgan, B., Cai, Z., Wang, L., & Graesser, A. C. (2019). Semantic

matching evaluation of user responses to electronics questions in AutoTutor. In Sixth (2019)

ACM Conference on Learning @ Scale (4 pages), Chicago, IL: ACM.

https://doi.org/10.1145/3330430.3333649

Carmon, C., Morgan, B., Hampton, A. J., Cai, Z., & Graesser, A. C. (2018). Semantic matching

evaluation in ElectronixTutor. In K. E. Boyer, & M. Yudelson (Eds.), Proceedings of the 11th

International Conference on Educational Data Mining (pp. 580–583). Buffalo, NY: EDM

53

Society.

Cohen, P. A., Kulik, J. A., & Kulik, C. L. C. (1982). Educational outcomes of tutoring: a meta-

analysis of findings. American Educational Research Journal, 19, 237-248.

Crossley, S., Kyle, K., Allen, L. K., Guo, L., & McNamara, D. (2014). Linguistic microfeatures to

predict L2 writing proficiency: a case study in automated writing evaluation. The Journal of

Writing Assessment, 7, 1-16.

Dorca, F. (2015). Implementation and use of simulated students for test and validation of new

adaptive educational systems: A practical insight. International Journal of Artificial

Intelligence in Education 25, 319–345.

Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J., & Campbell, G. (2014). BEETLE II: deep

natural language understanding and automatic feedback generation for intelligent tutoring in

basic electricity and electronics. Int J Artif Intell Educ, 24, 284–332.

Evens, M. W., Brandle, S., Chang, R. C., Freedman, R., Glass, M., Lee, Y. H., Shim, L. S., Woo,

C. W., Zhang, Y., Zhou, Y., Michael, J. A., Rovick, A. A. (2001). CIRCSIM-Tutor: an

intelligent tutoring system using natural language dialogue, In Proceedings of the 12th

midwest artificial intelligence and cognitive science conference (pp. 16–23). Oxford.

Gautam, D., Swiecki, Z., Shaffer, D. W., Graesser, A. C., & Rus, V. (2017). Modeling classifiers

for virtual internships without participant data. In X. Hu, T. Barnes, A. Hershkovitz, L.

Paquette (Eds), Proceedings of the 10th International Conference on Educational Data

Mining (pp. 278–283). Wuhan, China: EDM Society.

54

Graesser, A. C. (2016). Conversations with AutoTutor help students learn. International Journal of

Artificial Intelligence in Education, 26,124-132.

Graesser, A. C. (2020). Learning science principles and technologies with agents that promote deep

learning. In R.S. Feldman (Ed.), Learning science: Theory, research, and practice (pp. 2–

33). New York: McGraw-Hill.

55

Graesser, A. C., D’Mello, S. K., Hu. X., Cai, Z., Olney, A., & Morgan, B. (2012). AutoTutor. In P.

McCarthy and C. Boonthum-Denecke (Eds.), Applied natural language processing:

Identification, investigation, and resolution (pp. 169-187). Hershey, PA: IGI Global.

 Graesser, A. C., Hu, X., Nye, B., VanLehn K., Kumar, R., Heffernan, C., Heffernan, N., Woolf,

B., Olney, A. M., Rus, V., Andrasik, F., Pavlik, P., Cai, Z., Wetzel, J., Morgan, B.,

Hampton, A. J., Lippert, A. M., Wang, L., Chen, Q., Vinson IV, J. E., Kelly, C. N., McGlown,

C., Majmudar, C. A., Morshed, B., and Baer, W. (2017). ElectronixTutor: an intelligent

tutoring system with multiple learning resources for electronics. In International Journal of

STEM Education: Innovations and Research. DOI:10.1186/s40594-017-0072-5.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A. M., Louwerse, M.

M. (2004). AutoTutor: A tutor with dialogue in natural language. Behavior Research

Methods, Instruments, & Computers, 36, 180-193.

Graesser, A. C., Person, N. K., & Magliano, J. P. (1995). Collaborative dialogue patterns in natu-

ralistic one-to-one tutoring. Applied Cognitive Psychology, 9, 495–522.

Graesser, A. C., Wiemer-Hastings, K., Kreuz, R. J., Wiemer-Hastings, P., & Marquis, K. (2000).

QUAID: A questionnaire evaluation aid for survey methodologists. Behavior Research

Methods, Instruments, & Computers, 32(2), 254-262.

Haley, D. T., Thomas, P., Roeck, A. D., Petre, M. (2007). Measuring improvement in latent

semantic analysis-based marking systems: using a computer to mark questions about HTML.

In S. Mann & Simon (Eds.), Proceedings of the 9th australasian conference on computing

56

education, volume 66 of ACE (pp. 35–42). Ballarat: Australian Computer Society.

Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C., & Cai, Z. (2012). Operation

ARA: A computerized learning game that teaches critical thinking and scientific reasoning.

Thinking Skills and Creativity, 7, 93–100.

Ivens, S., & Koslin, B. (1991). Demands for Reading Literacy Require New Accountability

Methods. Brewster, NY: Touchstone Applied Science Associates.

Jackson, G. T., Ventura, M. J., Chewle, P., Graesser, A. C., & the Tutoring Research Group. (2004).

The Impact of Why/AutoTutor on learning and retention of conceptual physics. In J. C.

Lester, R. M. Vicari, & F. Paraguacu (Eds.), Intelligent Tutoring Systems 2004 (pp. 501–

510). Berlin, Germany: Springer.

Jurafsky, D., & Martin, J. (2008). Speech and language processing. Englewood: Prentice Hall.

Landauer, T. K., McNamara, D. S., Dennis, S., & Kintsch, W. (Eds.). (2007). Handbook of latent

semantic analysis. Mahwah, NJ: Erlbaum.

Lesgold, A., Lajoie, S. P., Bunzo, M., & Eggan, G. (1992). SHERLOCK: a coached practice

environment for an electronics trouble-shooting job. In J. H. Larkin & R. W. Chabay (Eds.),

Computer assisted instruction and intelligent tutoring systems: Shared goals and

complementary approaches (pp. 201–238). Hillsdale, NJ: Erlbaum.

Li, H., Gobert, J. & Graesser, A. C., & Dickler, R. (2018). Advanced educational technology for

science inquiry assessment. Policy Insights from the Behavioral and Brain Sciences, 5, 171-

178.

57

Nye, B. D., Graesser, A. C., & Hu, X. (2014). AutoTutor and family: a review of 17 years of natural

language tutoring. Int J Artif Intell Educ, 24(4), 427–469.

Olney, A., D’Mello, S. K., Person, N., Cade, W., Hays, P., Williams, C., Lehman, B., &

Graesser, A. C. (2012). Guru: a computer tutor that models expert human tutors. In S.

Cerri, W. Clancey, G. Papadourakis, & K. Panourgia (Eds.), Proceedings of Intelligent

Tutoring Systems (ITS) 2012 (pp. 256–261). Berlin: Springer.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and

other tutoring systems. Educational Psychologist 46, 197–221. 17.

VanLehn, K., Chung, G., Grover, S., Madni, A., & Wetzel, J. (2016). Learning science by

constructing models: can Dragoon increase learning without increasing the time required?

International Journal of Artificial Intelligence in Education, 26, 1033–1068.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rose, C.P. (2007). When are

tutorial dialogues more effective than reading? Cognitive Science, 31, 3-62.

VanLehn, K., Jordan, P. W., Rosé, C. P., Bhembe, D., Böttner, M., Gaydos, A., Makatchev, M.,

Pappuswamy, U., Ringenberg, M. A., Roque, A., Siler, S., & Srivastava, R. (2002). The

Architecture of Why2-Atlas: A Coach for Qualitative Physics Essay Writing. Intelligent

Tutoring Systems.

58

Appendix: A

Table 4

Agreement Measures Between Humans and between Computer and Humans

Condition k Precision Recall F1 d’

S: Judge 1 x Judge 2 .456 .467 .618 .532 1.593

I: Judge 1 x Judge 2 .466 .636 .565 .599 1.360

L: Judge 1 x Judge 2 .460 .710 .604 .653 1.274

S: LSA x Judge 1 .195 .547 .277 .368 .649

I: LSA x Judge 1 .241 .631 .369 .466 .762

L: LSA x Judge 1 .272 .673 .472 .555 .755

S: LSA x Judge 2 .150 .542 .207 .300 .575

I: LSA x Judge 2 .223 .592 .390 .47 .636

L: LSA x Judge 2 .236 .621 .511 .561 .618

S: RegEx x Judge 1 .366 .448 .440 .444 1.487

I: RegEx x Judge 1 .313 .607 .455 .52 1.07

L: RegEx x Judge 1 .306 .679 .545 .600 .870

S: RegEx x Judge 2 .428 .450 .585 .509 1.275

I: RegEx x Judge 2 .362 .677 .452 .542 .882

L: RegEx x Judge 2 .307 .713 .487 .579 .815

S: Combo x Judge 1 .466 .479 .584 .526 1.508

I: Combo x Judge 1 .365 .710 .446 .548 1.096

L: Combo x Judge 1 .291 .809 .463 .589 .939

S: Combo x Judge 2 .384 .482 .444 .462 1.312

59

I: Combo x Judge 2 .311 .633 .448 .524 .883

L: Combo x Judge 2 .292 .772 .519 .620 .850

Note. At the aggregate level, overall agreement values in the combination model match the values

between humans more closely than either of the stand-alone models.

Figure 8. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 1 and LSA in stringent thresholds.

Threshold Value

F
1
 M

ea
su

re
 A

g
re

em
en

t

Simulated Threshold Values for Optimizing F1: Judge 1 vs. LSA (S)

60

Figure 9. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 2 and LSA in stringent thresholds.

Simulated Threshold Values for Optimizing F1: Judge 2 vs. LSA (S)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

61

Figure 10. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 1 and LSA in intermediate thresholds.

Simulated Threshold Values for Optimizing F1: Judge 1 vs. LSA (I)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

62

Figure 11. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 2 and LSA in intermediate thresholds.

Simulated Threshold Values for Optimizing F1: Judge 2 vs. LSA (I)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

63

Figure 12. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 1 and LSA in lenient thresholds.

Simulated Threshold Values for Optimizing F1: Judge 1 vs. LSA (L)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

64

Figure 13. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 2 and LSA in lenient thresholds.

Simulated Threshold Values for Optimizing F1: Judge 2 vs. LSA (L)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

65

Figure 14. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 1 and LSA/RegEx combination model in stringent thresholds.

Simulated Threshold Values for Optimizing F1: Judge 1 vs. Combo (S)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

66

Figure 15. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 2 and LSA/RegEx combination model in stringent thresholds.

Simulated Threshold Values for Optimizing F1: Judge 2 vs. Combo (S)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

67

Figure 16. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 1 and LSA/RegEx combination model in intermediate thresholds.

Simulated Threshold Values for Optimizing F1: Judge 1 vs. Combo (I)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

68

Figure 17. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 2 and LSA/RegEx combination model in intermediate thresholds.

Simulated Threshold Values for Optimizing F1: Judge 2 vs. Combo (I)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

69

Figure 18. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 1 and LSA/RegEx combination model in lenient thresholds.

Simulated Threshold Values for Optimizing F1: Judge 1 vs. Combo (L)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

70

Figure 19. F1 measure agreement simulated for a thousand values of the discrimination threshold

between Judge 2 and LSA/RegEx combination model in lenient thresholds.

Simulated Threshold Values for Optimizing F1: Judge 1 vs. Combo (L)

F
1
 M

ea
su

re
 A

g
re

em
en

t

Threshold Value

71

Appendix: B

Annotated Python Code

Codec-to-txt PDF Version/ Text Chunker/Corpus Writing Tool

from urllib import request

from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter

from pdfminer.converter import TextConverter

from pdfminer.layout import LAParams

from pdfminer.pdfpage import PDFPage

import re

import urllib

from bs4 import BeautifulSoup

the line below is for pulling a pdf from a link and downloading it to

your python path folder. the pdf will be later converted to text and then

modified and written to a text corpus.

request.urlretrieve("http://www.rollanet.org/~n0klu/Ham_Radio/(eBook)%20Ele

ctronics%20-%20The%20Electrical%20Engineering%20Handbook.pdf",

"download.pdf")

the 2 arguments given are ("direct link to pdf", "what you want to name

the download (e.g. "download.pdf", "download13.pdf", "Fundamentals-of-

Electronics.pdf", etc.)")

this step is not necessary if you download a pdf manually and put it in

the python path folder

def pdf_to_txt(path):

72

 rsrcmgr = PDFResourceManager()

 retstr = io.StringIO()

 codec = 'utf-8'

 laparams = LAParams()

 device = TextConverter(rsrcmgr, retstr, laparams=laparams,

imagewriter=None)

 fp = open(path, 'rb')

 interpreter = PDFPageInterpreter(rsrcmgr, device)

 password = ""

 maxpages = 0

 caching = True

 pagenos=set()

 for page in PDFPage.get_pages(fp, pagenos,

maxpages=maxpages,password=password,caching=caching,

check_extractable=True):

 interpreter.process_page(page)

 text = retstr.getvalue()

 fp.close()

 device.close()

 retstr.close()

 return text

text = pdf_to_txt("war-and-peace.pdf") # again, the name of the pdf that

you want to convert to text

print(text[:100])

73

#text = convert_pdf_to_txt("war-and-peace.pdf")

listt = []

for i in text.split('\n\n'):

 listt.append(i)

listylistt = []

listylisttlen = []

for i in listt:

 listylisttlen.append(i)

 listylistt.append([i])

listycleaned = []

for i in range(len(listylistt)): #getting rid of unwanted

short paragraphs

 if len(listylisttlen[i]) > 50:

 listycleaned.append(listylistt[i])

#where i is the beginning of the body text, and where range is end of body

text minus i:

here we say i=25(beginning of body text),

and range(x)= 10779 (10804-25)

i = 25

for j in range(10779):

 for value in listycleaned[i]:

 i += 1

74

 f = io.open("foldy/TestCorpusWriter/snippet01_%s.txt" % i, 'w',

encoding="utf-8") ## change chunk name ('snippet01_01' becomes

'snippet01_02')

 f.write(value)

 f.close()

Codec-to-txt HTML Version/ Text Chunker/Corpus Writing Tool

url = "https://olney.ai/neets-web/Mod01%20-%20Matter%20Energy%20and%20DC.pd

f-extracted/Mod01%20-%20Matter%20Energy%20and%20DC.pdf.xhtml-pretty.html"

html = request.urlopen(url).read().decode('utf8')

response = request.urlopen(url)

raw = response.read().decode('utf8')

splits = BeautifulSoup(html, 'html.parser').find_all('p')

len(raw)

listy= []

with open("paragraphsplit.txt","wb") as outfile:

 for i in splits:

 outfile.write(bytes(i.text+'\n', 'UTF-8'))

 listy.append(i.text)

listycleaned = []

for i in range(len(listy)): #getting rid of unwanted shor

t paragraphs

 if len(listy[i]) > 140:

 listycleaned.append(listy[i])

75

print(listycleaned[90])

print(len(listycleaned))

for j in range(len([listycleaned])):

 i = 0

 for value in listycleaned:

 i += 1

 f = io.open("foldy/TestCorpusWriter/mod01_%s.txt" % i, 'w', encodin

g="utf-8") ## change volume name ('mod01' becomes 'mod02'), chunk nam

e is 'mod01_01', 'mod01_02', etc.

 f.write(value)

 f.close()

LSA Model Builder with Performance Metrics

import sklearn.datasets as datasets ##all imports used in the co

de

import gensim.utils as gensimUtils

import nltk

from gensim import corpora

from gensim import models

import pandas as pd

import scipy.spatial.distance as scipyDistance

from gensim.test.utils import common_texts, get_tmpfile

from gensim.models import Word2Vec

import gensim.parsing.preprocessing as preprocessing

from gensim.models import Phrases

76

import numpy as np

from nltk.corpus import stopwords

import re

from gensim.models.doc2vec import TaggedDocument

from gensim.models import Doc2Vec

from sklearn.metrics.pairwise import cosine_similarity

from sklearn.metrics import accuracy_score

from nltk.tokenize import word_tokenize,sent_tokenize

from nltk.stem import SnowballStemmer

from gensim.models.doc2vec import LabeledSentence

from nltk.metrics import scores

from sklearn.metrics import confusion_matrix

from nltk.tokenize import word_tokenize,sent_tokenize

from sklearn.metrics import cohen_kappa_score

from easy_table import EasyTable

import sys

sys.argv = [""]

textCorpus = (datasets.load_files('NEETS-Electronics Corpus+Physics32k', sh

uffle=False)) #upload text corpus (46k total texts) best so far has been at

46k texts

ET=pd.read_csv('ETrespclean2.csv', encoding='latin1') #get data from studen

t responses set

df = pd.DataFrame(ET) #set ET as dataframe

77

dfIdeal = pd.DataFrame({'Gsentences': ET.GA}) #define ideal answers for tok

enization (good answers/Gans).

dfIdeal['tokenized_sents'] = dfIdeal.apply(lambda row: nltk.word_tokenize(r

ow['Gsentences']), axis=1)

dfStudent = pd.DataFrame({'Ssentences': ET.SA}) #define student answers for

tokenization.

dfStudent['tokenized_sents'] = dfStudent.apply(lambda row: nltk.word_tokeni

ze(row['Ssentences']), axis=1)

Gans = dfIdeal['tokenized_sents'] ##renaming the 2 tokenized sent sets for

ease.

Sans = dfStudent['tokenized_sents']

GansDict = (dfIdeal['tokenized_sents'].to_dict) #dictionary for tokenized

sents

SansDict = (dfStudent['tokenized_sents'].to_dict)

tokenizedSentences = [(gensimUtils.simple_preprocess(i, deacc=True, min_len

=2, max_len=18)) for i in textCorpus.data] #tokenize text corpus to build/t

rain models on

tokenizedGans = [(gensimUtils.simple_preprocess(i, deacc=True, min_len=1, m

ax_len=14)) for i in ET.GA] #tokenize Gans and Sans for use in w2v, w2vB, a

nd D2V models matching(LSA allows for unknown terms in tokenized strings. t

hese other models do not.)

tokenizedSans = [(gensimUtils.simple_preprocess(i, deacc=True, min_len=1, m

ax_len=14)) for i in ET.SA]

78

tokenizedGansclean = [] #this is done for Gans only to remove answer labe

ls in the text (Gans:). labels like E1:, E2:, E3: etc. are removed in prepr

ocesssing

for i in range(5166):

 hehe = []

 for haha in tokenizedGans[i]:

 if haha != 'gans':

 hehe.append(haha)

 tokenizedGansclean.append(hehe)

englishStop = set(stopwords.words("english"))

frequency = nltk.FreqDist(nltk.flatten(tokenizedSentences)) #frequency dist

ribution

processedCorpus = [[i for i in j if frequency[i] > 1 and i not in englishSt

op] for j in tokenizedSentences]

dictionary = corpora.Dictionary(processedCorpus) # building inverse documen

t frequency matrix to be used by the LSA model

termdocMatrix = [dictionary.doc2bow(i) for i in processedCorpus]

tfidf = models.TfidfModel(termdocMatrix)

tfidfMatrix = tfidf[termdocMatrix]

lsaPhys = models.LsiModel(tfidfMatrix, id2word=dictionary, num_topics=310)

#LSA physics model with 200 topics/dimensions

lsaSpacePhys = lsaPhys[tfidfMatrix]

79

lsaPhys.save("NEETS-ELECTRONICS+PHYSICS-LSAmodelv1.2-310")

length = len(ET.GA)

i = 0

LSAlistylist = []

while i < length:

##cosine similarity for ideal answer and student response LSA model

 try:

 GansBow = dictionary.doc2bow(tokenizedGansclean[i])

 SansBow = dictionary.doc2bow(tokenizedSans[i])

 GansVector = pd.DataFrame(lsaPhys[GansBow], columns=['dim','val'])

 SansVector = pd.DataFrame(lsaPhys[SansBow], columns=['dim','val'])

 matchscore = scipyDistance.cosine(SansVector['val'], GansVector['va

l'])

 j = (1 - matchscore)

 LSAlistylist.append(j)

 i += 1

 except (ValueError, ZeroDivisionError):

 b = 0

 LSAlistylist.append(b) # do nothing!

 i += 1

 if RuntimeWarning: # these bad boys can surviv

e for miles without water.

 pass

80

 for value in LSAlistylist: # recodes string n/a into f

loat = 0 for missing values in LSA match scores

 if value == 'n/a':

 LSAistylist.append(value)

LSAnum = [i for i in LSAlistylist] #update entire set of cosine simila

rity scores for LSA model as a new column in dataframe

LSAse = pd.Series(LSAnum)

df['LSAp'] = LSAse.values

LSA Model Loader

lsaPhys = models.LsiModel.load("NEETS-ELECTRONICS+PHYSICS-LSAmodelv1.2-500"

)

length = len(ET.GA)

i = 0

LSAlistylist = []

while i < length:

##cosine similarity for ideal answer and student response LSA model

 try:

 GansBow = dictionary.doc2bow(tokenizedGansclean[i])

 SansBow = dictionary.doc2bow(tokenizedSans[i])

 GansVector = pd.DataFrame(lsaPhys[GansBow], columns=['dim','val'])

 SansVector = pd.DataFrame(lsaPhys[SansBow], columns=['dim','val'])

81

 matchscore = scipyDistance.cosine(SansVector['val'], GansVector['va

l'])

 j = (1 - matchscore)

 LSAlistylist.append(j)

 i += 1

 except (ValueError, ZeroDivisionError):

 b = 0

 LSAlistylist.append(b) # do nothing!

 i += 1

 if RuntimeWarning: # these bad boys can surviv

e for miles without water.

 pass

 for value in LSAlistylist: # recodes string n/a into f

loat = 0 for missing values in LSA match scores

 if value == 'n/a':

 LSAistylist.append(value)

LSAnum = [i for i in LSAlistylist] #update entire set of cosine simila

rity scores for LSA model as a new column in dataframe

LSAse = pd.Series(LSAnum)

df['LSAp'] = LSAse.values

Automated Model Simulation with Full Performance Metrics

listStringentJudge1 = []

listStringentJudge1P = []

listStringentJudge1R = []

82

ClistStringentJudge1 = []

ClistStringentJudge1P = []

ClistStringentJudge1R = []

i = 0

for value in range(1000):

 i += .001

 Jthresh = [] ##the next 8 for loops are about co

ding match values for human judges and computer models(LSA, LSA/RegEx Combo

)

 for value in ET.J1:

 if value == Jthreshv:

 Jthresh.append(1)

 else:

 Jthresh.append(0)

 LSAthresh = []

 for value in df['LSAp']:

 if value >= i:

 LSAthresh.append(1)

 else:

 LSAthresh.append(0)

 RegExLSA = merge(RegExthresh, LSAthresh) ##Very important. Us

ed for Judges either/or as well as LSA/RegEx combination thresholds.

 Combothresh = []

 for value in RegExLSA:

 if value[0] or value[1] == 1:

 Combothresh.append(1)

83

 else:

 Combothresh.append(0)

 LSAcm = confusion_matrix(Jthresh, LSAthresh) #confusion matrix to plug

into precision and recall tool

 tp = LSAcm[1,1]

 tn = LSAcm[0,0]

 p = (LSAcm[1,0] + LSAcm[1,1]) ##LSA vs Judge 1

 n = (LSAcm[0,0] + LSAcm[0,1])

 fp = LSAcm[1,0]

 fn = LSAcm[0,1]

accuracy: (tp + tn) / (p + n)

 accuracy = (tp + tn) / (p + n)

precision tp / (tp + fp)

 precision = tp / (tp + fp)

 # recall: tp / (tp + fn)

 recall = tp / (tp + fn)

f1: 2 tp / (2 tp + fp + fn)

 f1 = 2*tp / (2*tp + fp + fn)

 listStringentJudge1.append((f1, i))

 listStringentJudge1P.append((precision, i))

 listStringentJudge1R.append((recall, i))

 Combocm = confusion_matrix(Jthresh, Combothresh) #confusion matrix to

plug into precision and recall tool

84

 Ctp = Combocm[1,1]

 Ctn = Combocm[0,0]

 Cp = (Combocm[1,0] + Combocm[1,1]) ##Combo vs Judge

1

 Cn = (Combocm[0,0] + Combocm[0,1])

 Cfp = Combocm[1,0]

 Cfn = Combocm[0,1]

accuracy: (tp + tn) / (p + n)

 Caccuracy = (Ctp + Ctn) / (Cp + Cn)

precision tp / (tp + fp)

 Cprecision = Ctp / (Ctp + Cfp)

 # recall: tp / (tp + fn)

 Crecall = Ctp / (Ctp + Cfn)

f1: 2 tp / (2 tp + fp + fn)

 Cf1 = 2*Ctp / (2*Ctp + Cfp + Cfn)

 ClistStringentJudge1.append((Cf1, i))

 ClistStringentJudge1P.append((Cprecision, i))

 ClistStringentJudge1R.append((Crecall, i))

listLenientJudge2P = []

listLenientJudge2R = []

listLenientJudge2 = []

ClistLenientJudge2P = []

ClistLenientJudge2R = []

ClistLenientJudge2 = []

i = 0

85

for value in range(1000):

 i += .001

 J2threshL = []

 for value in ET.J2:

 if value >= J2threshLv:

 J2threshL.append(1)

 else:

 J2threshL.append(0)

 LSAthreshL = []

 for value in df['LSAp']:

 if value >= i:

 LSAthreshL.append(1)

 else:

 LSAthreshL.append(0)

 RegExLSAL = merge(RegExthreshL, LSAthreshL) ##Very important.

Used for Judges either/or as well as LSA/RegEx combination thresholds.

 CombothreshL = []

 for value in RegExLSAL:

 if value[0] or value[1] == 1:

 CombothreshL.append(1)

 else:

 CombothreshL.append(0)

 LSAcmL2 = confusion_matrix(J2threshL, LSAthreshL) #confusion matrix to

plug into precision and recall tool

86

 tpL2 = LSAcmL2[1,1]

 tnL2 = LSAcmL2[0,0]

 pL2 = (LSAcmL2[1,0] + LSAcmL2[1,1])

 nL2 = (LSAcmL2[0,0] + LSAcmL2[0,1])

 fpL2 = LSAcmL2[1,0]

 fnL2 = LSAcmL2[0,1]

accuracy: (tp + tn) / (p + n)

 accuracyL2 = (tpL2 + tnL2) / (pL2 + nL2)

precision tp / (tp + fp)

 precisionL2 = tpL2 / (tpL2 + fpL2)

 recallL2 = tpL2 / (tpL2 + fnL2)

f1: 2 tp / (2 tp + fp + fn)

 f1L2 = 2*tpL2 / (2*tpL2 + fpL2 + fnL2)

 listLenientJudge2.append((f1L2, i))

 listLenientJudge2P.append((precisionL2, i))

 listLenientJudge2R.append((recallL2, i))

 CombocmL2 = confusion_matrix(J2threshL, CombothreshL) #confusion matri

x to plug into precision and recall tool

 CtpL2 = CombocmL2[1,1]

 CtnL2 = CombocmL2[0,0]

 CpL2 = (CombocmL2[1,0] + CombocmL2[1,1])

 CnL2 = (CombocmL2[0,0] + CombocmL2[0,1])

 CfpL2 = CombocmL2[1,0]

 CfnL2 = CombocmL2[0,1]

accuracy: (tp + tn) / (p + n)

87

 CaccuracyL2 = (CtpL2 + CtnL2) / (CpL2 + CnL2)

precision tp / (tp + fp)

 CprecisionL2 = CtpL2 / (CtpL2 + CfpL2)

 CrecallL2 = CtpL2 / (CtpL2 + CfnL2)

f1: 2 tp / (2 tp + fp + fn)

 Cf1L2 = 2*CtpL2 / (2*CtpL2 + CfpL2 + CfnL2)

 ClistLenientJudge2.append((Cf1L2, i))

 ClistLenientJudge2P.append((CprecisionL2, i))

 ClistLenientJudge2R.append((CrecallL2, i))

listLenientJudge1P = []

listLenientJudge1R = []

listLenientJudge1 = []

ClistLenientJudge1P = []

ClistLenientJudge1R = []

ClistLenientJudge1 = []

i = 0

for value in range(1000):

 i += .001

 JthreshL = [] ##the next 8 for loops are about c

oding match values for human judges and computer models in lenient threshol

ds.

 for value in ET.J1:

 if value >= JthreshLv:

 JthreshL.append(1)

 else:

88

 JthreshL.append(0)

 LSAthreshL = []

 for value in df['LSAp']:

 if value >= i:

 LSAthreshL.append(1)

 else:

 LSAthreshL.append(0)

 RegExLSAL = merge(RegExthreshL, LSAthreshL) ##Very important.

Used for Judges either/or as well as LSA/RegEx combination thresholds.

 CombothreshL = []

 for value in RegExLSAL:

 if value[0] or value[1] == 1:

 CombothreshL.append(1)

 else:

 CombothreshL.append(0)

 LSAcmL = confusion_matrix(JthreshL, LSAthreshL) #confusion matrix to p

lug into precision and recall tool

 tpL = LSAcmL[1,1]

 tnL = LSAcmL[0,0]

 pL = (LSAcmL[1,0] + LSAcmL[1,1])

 nL = (LSAcmL[0,0] + LSAcmL[0,1])

 fpL = LSAcmL[1,0]

 fnL = LSAcmL[0,1]

accuracy: (tp + tn) / (p + n)

 accuracyL = (tpL + tnL) / (pL + nL)

89

precision tp / (tp + fp)

 precisionL = tpL / (tpL + fpL)

 recallL = tpL / (tpL + fnL)

f1: 2 tp / (2 tp + fp + fn)

 f1L = 2*tpL / (2*tpL + fpL + fnL)

 listLenientJudge1.append((f1L, i))

 listLenientJudge1P.append((precisionL, i))

 listLenientJudge1R.append((recallL, i))

 CombocmL = confusion_matrix(JthreshL, CombothreshL) #confusion matrix

to plug into precision and recall tool

 CtpL = CombocmL[1,1]

 CtnL = CombocmL[0,0]

 CpL = (CombocmL[1,0] + CombocmL[1,1])

 CnL = (CombocmL[0,0] + CombocmL[0,1])

 CfpL = CombocmL[1,0]

 CfnL = CombocmL[0,1]

accuracy: (tp + tn) / (p + n)

 CaccuracyL = (CtpL + CtnL) / (CpL + CnL)

precision tp / (tp + fp)

 CprecisionL = CtpL / (CtpL + CfpL)

 CrecallL = CtpL / (CtpL + CfnL)

f1: 2 tp / (2 tp + fp + fn)

 Cf1L = 2*CtpL / (2*CtpL + CfpL + CfnL)

 ClistLenientJudge1.append((Cf1L, i))

 ClistLenientJudge1P.append((CprecisionL, i))

 ClistLenientJudge1R.append((CrecallL, i))

90

listIntermediateJudge2 = []

listIntermediateJudge2P = []

listIntermediateJudge2R = []

ClistIntermediateJudge2 = []

ClistIntermediateJudge2P = []

ClistIntermediateJudge2R = []

i = 0

for value in range(1000):

 i += .001

 J2threshI = []

 for value in ET.J2:

 if value >= J2threshIv:

 J2threshI.append(1)

 else:

 J2threshI.append(0)

 LSAthreshI = []

 for value in df['LSAp']:

 if value >= i:

 LSAthreshI.append(1)

 else:

 LSAthreshI.append(0)

 RegExLSAI = merge(RegExthreshI, LSAthreshI) ##Very important.

Used for Judges either/or as well as LSA/RegEx combination thresholds.

 CombothreshI = []

91

 for value in RegExLSAI:

 if value[0] or value[1] == 1:

 CombothreshI.append(1)

 else:

 CombothreshI.append(0)

 LSAcmI2 = confusion_matrix(J2threshI, LSAthreshI) #confusion matrix to

plug into precision and recall tool

 tpI2 = LSAcmI2[1,1]

 tnI2 = LSAcmI2[0,0]

 pI2 = (LSAcmI2[1,0] + LSAcmI2[1,1])

 nI2 = (LSAcmI2[0,0] + LSAcmI2[0,1])

 fpI2 = LSAcmI2[1,0]

 fnI2 = LSAcmI2[0,1]

accuracy: (tp + tn) / (p + n)

 accuracyI2 = (tpI2 + tnI2) / (pI2 + nI2)

precision tp / (tp + fp)

 precisionI2 = tpI2 / (tpI2 + fpI2)

recall: tp / (tp + fn)

 recallI2 = tpI2 / (tpI2 + fnI2)

f1: 2 tp / (2 tp + fp + fn)

 f1I2 = 2*tpI2 / (2*tpI2 + fpI2 + fnI2)

 listIntermediateJudge2.append((f1I2, i))

 listIntermediateJudge2P.append((precisionI2, i))

 listIntermediateJudge2R.append((recallI2, i))

92

 CombocmI2 = confusion_matrix(J2threshI, CombothreshI) #confusion matri

x to plug into precision and recall tool

 CtpI2 = CombocmI2[1,1]

 CtnI2 = CombocmI2[0,0]

 CpI2 = (CombocmI2[1,0] + CombocmI2[1,1])

 CnI2 = (CombocmI2[0,0] + CombocmI2[0,1])

 CfpI2 = CombocmI2[1,0]

 CfnI2 = CombocmI2[0,1]

accuracy: (tp + tn) / (p + n)

 CaccuracyI2 = (CtpI2 + CtnI2) / (CpI2 + CnI2)

precision tp / (tp + fp)

 CprecisionI2 = CtpI2 / (CtpI2 + CfpI2)

 CrecallI2 = CtpI2 / (CtpI2 + CfnI2)

f1: 2 tp / (2 tp + fp + fn)

 Cf1I2 = 2*CtpI2 / (2*CtpI2 + CfpI2 + CfnI2)

 ClistIntermediateJudge2.append((Cf1I2, i))

 ClistIntermediateJudge2P.append((CprecisionI2, i))

 ClistIntermediateJudge2R.append((CrecallI2, i))

listIntermediateJudge1 = []

listIntermediateJudge1P = []

listIntermediateJudge1R = []

ClistIntermediateJudge1 = []

ClistIntermediateJudge1P = []

ClistIntermediateJudge1R = []

93

i = 0

for value in range(1000):

 i += .001

 JthreshI = [] ##the next 8 for loops are about c

oding match values for human judges and computer models in intermediate thr

esholds.

 for value in ET.J1:

 if value >= JthreshIv:

 JthreshI.append(1)

 else:

 JthreshI.append(0)

 LSAthreshI = []

 for value in df['LSAp']:

 if value >= i:

 LSAthreshI.append(1)

 else:

 LSAthreshI.append(0)

 RegExLSAI = merge(RegExthreshI, LSAthreshI) ##Very important.

Used for Judges either/or as well as LSA/RegEx combination thresholds.

 CombothreshI = []

 for value in RegExLSAI:

 if value[0] or value[1] == 1:

 CombothreshI.append(1)

 else:

 CombothreshI.append(0)

94

 LSAcmI = confusion_matrix(JthreshI, LSAthreshI) #confusion matrix to p

lug into precision and recall tool

 tpI = LSAcmI[1,1]

 tnI = LSAcmI[0,0]

 pI = (LSAcmI[1,0] + LSAcmI[1,1])

 nI = (LSAcmI[0,0] + LSAcmI[0,1])

 fpI = LSAcmI[1,0]

 fnI = LSAcmI[0,1]

accuracy: (tp + tn) / (p + n)

 accuracyI = (tpI + tnI) / (pI + nI)

precision tp / (tp + fp)

 precisionI = tpI / (tpI + fpI)

recall: tp / (tp + fn)

 recallI = tpI / (tpI + fnI)

 # f1: 2 tp / (2 tp + fp + fn)

 f1I = 2*tpI / (2*tpI + fpI + fnI)

 listIntermediateJudge1.append((f1I, i))

 listIntermediateJudge1R.append((recallI, i))

 listIntermediateJudge1P.append((precisionI, i))

 CombocmI = confusion_matrix(JthreshI, CombothreshI) #confusion matrix

to plug into precision and recall tool

 CtpI = CombocmI[1,1]

 CtnI = CombocmI[0,0]

 CpI = (CombocmI[1,0] + CombocmI[1,1])

 CnI = (CombocmI[0,0] + CombocmI[0,1])

95

 CfpI = CombocmI[1,0]

 CfnI = CombocmI[0,1]

accuracy: (tp + tn) / (p + n)

 CaccuracyI = (CtpI + CtnI) / (CpI + CnI)

precision tp / (tp + fp)

 CprecisionI = CtpI / (CtpI + CfpI)

 CrecallI = CtpI / (CtpI + CfnI)

f1: 2 tp / (2 tp + fp + fn)

 Cf1I = 2*CtpI / (2*CtpI + CfpI + CfnI)

 ClistIntermediateJudge1.append((Cf1I, i))

 ClistIntermediateJudge1P.append((CprecisionI, i))

 ClistIntermediateJudge1R.append((CrecallI, i))

listStringentJudge2R = []

listStringentJudge2P = []

listStringentJudge2 = []

ClistStringentJudge2R = []

ClistStringentJudge2P = []

ClistStringentJudge2 = []

i = 0

for value in range(1000):

 i += .001

 J2thresh = []

 for value in ET.J2:

 if value == J2threshv:

96

 J2thresh.append(1)

 else:

 J2thresh.append(0)

 LSAthresh = []

 for value in df['LSAp']:

 if value >= i:

 LSAthresh.append(1)

 else:

 LSAthresh.append(0)

 RegExLSA = merge(RegExthresh, LSAthresh) ##Very important. Us

ed for Judges either/or as well as LSA/RegEx combination thresholds.

 Combothresh = []

 for value in RegExLSA:

 if value[0] or value[1] == 1:

 Combothresh.append(1)

 else:

 Combothresh.append(0)

 LSAcm2 = confusion_matrix(J2thresh, LSAthresh) #confusion matrix to pl

ug into precision and recall tool

 tp2 = LSAcm2[1,1]

 tn2 = LSAcm2[0,0]

 p2 = (LSAcm2[1,0] + LSAcm2[1,1]) ##LSA vs Judge 2

 n2 = (LSAcm2[0,0] + LSAcm2[0,1])

 fp2 = LSAcm2[1,0]

 fn2 = LSAcm2[0,1]

97

accuracy: (tp + tn) / (p + n)

 accuracy2 = (tp2 + tn2) / (p2 + n2)

precision tp / (tp + fp)

 precision2 = tp2 / (tp2 + fp2)

recall: tp / (tp + fn)

 recall2 = tp2 / (tp2 + fn2)

f1: 2 tp / (2 tp + fp + fn)

 f12 = 2*tp2 / (2*tp2 + fp2 + fn2)

 listStringentJudge2.append((f12, i))

 listStringentJudge2R.append((recall2, i))

 listStringentJudge2P.append((precision2, i))

 Combocm2 = confusion_matrix(J2thresh, Combothresh) #confusion matrix t

o plug into precision and recall tool

 Ctp2 = Combocm2[1,1]

 Ctn2 = Combocm2[0,0]

 Cp2 = (Combocm2[1,0] + Combocm2[1,1]) ##Combo vs Jud

ge 1

 Cn2 = (Combocm2[0,0] + Combocm2[0,1])

 Cfp2 = Combocm2[1,0]

 Cfn2 = Combocm2[0,1]

accuracy: (tp + tn) / (p + n)

 Caccuracy2 = (Ctp2 + Ctn2) / (Cp2 + Cn2)

precision tp / (tp + fp)

 Cprecision2 = Ctp2 / (Ctp2 + Cfp2)

 # recall: tp / (tp + fn)

98

 Crecall2 = Ctp2 / (Ctp2 + Cfn2)

f1: 2 tp / (2 tp + fp + fn)

 Cf12 = 2*Ctp2 / (2*Ctp2 + Cfp2 + Cfn2)

 ClistStringentJudge2.append((Cf12, i))

 ClistStringentJudge2P.append((Cprecision2, i))

 ClistStringentJudge2R.append((Crecall2, i))

