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grandmother’s financial status because the indicators for constructing the SES included parental 

occupation, the number of children who shared one bedroom and total family income. Since the 

number of grandmothers with a high SES level (n = 8) was limited, it is likely that this prevents 

the detection of differences in grandchild’s birth weight. Hence, a sensitivity analysis combining 

grandmothers with the medium or high levels into one group was performed. However, also the 

results of the sensitivity analysis found neither direct nor indirect association between grand-

maternal SES and GBW (results not shown). In contrast, results from two studies in US and 

Brazil found that grandmothers with higher family income predicted increased birth weight in 

the grandchildren [41, 44]. In terms of considering education as an SES indicator, an increasing 

number of studies revealed a strong and positive association between grand-maternal education 

level GBW, either independent of or dependent on maternal risk factors [34, 41, 46, 103, 104]. 

However, the study using data from a large cohort study in China reported an insignificant 

association between grandparent’s education level and GBW, even after adjustment for maternal 

risk factors [42]. Therefore, more studies are needed to understand the transgenerational effect 

between grand-maternal SES and offspring birth weight. 

Unexpectedly, grand-maternal SES was found to be negatively associated with maternal 

birth weight. I compared this inverse association to the previous studies, which focused on 

maternal financial status since the grand-maternal SES reflected financial status as mentioned 

above. In agreement with our results, a study using data Danish National Birth Cohort found that 

a higher household income was negatively related to gestational age-specific birth weight, but 

they were unable to find a reasonable explanation. However, other previous studies showed 

opposite findings [38, 39]. For example, mothers with higher economic status delivered infants 

with higher birth weight [38]. Compared to mothers in the highest income category, mothers in 
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the lower income categories had an increased risk of small for gestational age at birth, even after 

adjustment for maternal education [39]. It was suggested that families with higher income had 

the financial capability to purchase relatively more expensive food with higher quality and better 

nutrients [105], so that pregnant mothers can keep a balanced and healthy diet. As reported in the 

results section, the distributions of grand-maternal SES were significantly different between the 

analysis and total samples. To investigate a potential bias, I examined the intergenerational 

association between grand-maternal SES and maternal birth weight using multiple linear 

regression and data from the total sample (n=1046). Results showed that after controlling for 

grand-maternal BMI and smoking, offspring of grandmothers with a medium financial status, 

compared to those of grandmothers with low financial status, also had a lower birth weight by 

24.49 grams (p = 0.59), whereas offspring of grandmothers with a high financial status had a 

higher birth weight by 120.82 grams (p = 0.08). Hence, in the complete sample, there was an 

insignificant curvilinear association between grand-maternal SES and maternal birth weight, 

with lower birth weight in grand-mothers with medium SES. Thus, the negative association 

between grand-maternal SES and maternal birth weight found in the analytical sample may have 

resulted from the differential distributions of grand-maternal SES in the analytical sample and 

the total sample (fewer grandmothers with high SES and more grandmothers with low SES, 

Table 3).  

Our study has several strengths. First, this prospective birth cohort study enabled me to 

assess the transgenerational effect of grand-maternal SES on GBW across three consecutive 

generations. Second, using path analysis facilitated the evaluation of both direct and indirect 

effects of grand-maternal SES on GBW, as well as the separation of mediating and confounding 

effects. Third, using FIML method in PROC CALIS in SAS enabled me to incorporate 
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observations with missing data on some variables [85, 86]. Fourth, cluster analysis was used to 

categorize the participants into appropriate socioeconomic status, which incorporated multiple 

indicators of SES. Fifth, birth weight was based on obstetric and delivery records, providing a 

reliable ascertainment. This study also has some limitations. First, the sample size in this study 

was small with 209 pairs of grand-mothers and mothers and 355 grandchildren. Second, some F1 

mothers delivered more than one child, and grandchildren within the same family could have 

some unknown but common characteristics. Using path analysis did not allow me to account for 

the random effect of family clusters. Third, the mean F1 maternal age of 23.1 years at delivery 

was younger in this study than the mean age of 28.8 years in 2016 from the national statistics in 

UK [99]. This was due to the study setting, which was based on the first pregnancies of F1 

cohort mothers in contrast to including all pregnancies of a representative group of mothers in 

the F0 generation. Fourth, I was only able to analyze the data of the maternal line (i.e., F1 cohort 

mothers and their mothers and children), because we lack information regarding grand-paternal 

BMI. Although some studies showed that the transmission of birth weight and BMI was more 

apparent through the maternal line, the transmission in the paternal line still deserves further 

examination [26, 100-102].  

In conclusion, contradictory to some previous findings [32, 34, 41, 44, 104] and in agreement 

with others [42, 43, 46], our results suggest that there was neither direct nor indirect association 

between grandmother’s SES and birth weight in the grandchildren. This indicates that the effect 

of social disparities experienced by mothers on infant birth weight does not persist into later 

generations. 
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Chapter 4 

Maternal DNA Methylation in Early Adulthood Mediates the Effect of Maternal 

Grandmother's Body Mass Index on Offspring Birth Weight  

Abstract 

Background: I previously demonstrated in Chapter 2 that the positive association between 

grand-maternal pre-pregnancy BMI and grandchild’s birth weight (GBW) was mediated by 

maternal birth weight and BMI in early adulthood. DNA methylation (DNAm) has been 

suggested as a potential mediating pathway. 

Methods: Data of three consecutive generations (209 grandmother-mother pairs and 355 

grandchildren) from Isle of Wight birth cohort in UK were analyzed. A two-step screening 

analysis using ttScreening package and robust regression models was conducted to identify the 

CpG sites associated with grand-maternal BMI and GBW, respectively. The CpG sites (total 

screened: 349,455 sites) that survived both steps were taken forward to further analysis. Next, I 

applied structural equation modeling (SEM) to assess whether maternal differentially methylated 

CpG sites at age 18 mediated the association between grand-maternal BMI and GBW. The full 

information maximum likelihood method was applied to incorporate observations with missing 

data of some variables.  

Results: I identified 53 differentially methylated CpGs in mother’s peripheral blood at age 18 to 

be associated with maternal grandmother’s pre-pregnancy BMI. Two CpG sites of cg01481989 

and cg13595777 were also associated (in this case negatively) with offspring birth weight. SEM 

results show that maternal methylation levels of cg01481989 and cg13595777 at age 18 

mediated the positive association between grand-maternal BMI and GBW. Additionally, I found 

that the negative and indirect association between grand-maternal smoking during pregnancy and 
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GBW can be mediated via two potential pathways, including maternal smoking level during 

pregnancy and maternal birth weight-to-methylation levels of cg13595777 at age 18 years. 

Conclusions: The findings of this study suggest that maternal DNAm in early adulthood 

mediated the positive association between grand-maternal BMI and offspring birth weight. These 

findings should be treated with caution since a replication is required. 

 

Keywords: 

Grand-maternal BMI, grand-maternal smoking during pregnancy, maternal birth weight, 

maternal BMI, maternal DNA methylation, grandchild’s birth weight, structural equation model, 

mediation analysis, intergenerational effects 
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Introduction 

Results of a variety of studies suggested that maternal body mass index (BMI) outside of 

the normal range is likely to be associated with offspring birth weight [20-22, 75, 76]. In 

offspring, the related intrauterine mechanisms may have long-term influences on childhood and 

adulthood chronic diseases in later life [70, 106, 107]. I have previously demonstrated in Chapter 

2 that a higher grand-maternal pre-pregnancy BMI had an increasing impact on grandchild’s 

birth weight (GBW) through the mediating effect of maternal birth weight and BMI in early 

adulthood. 

Epigenetic mechanisms offer pathways to explain how grand-maternal BMI could have 

sustained influences on health in their grandchildren. DNA methylation (DNAm), one inducible 

group of epigenetic markers providing memory of past exposure, has been suggested to bridge 

the prenatal and early-life environment with the development of adult diseases [51, 52], 

particularly addressed in the hypothesis of developmental origins of diseases [53]. An expanding 

literature demonstrated the associations between maternal features or risk factors before and 

during pregnancy and offspring DNAm at different time points in life. The identified maternal 

risk factors include but are not limited to maternal pre-pregnancy BMI (measured as a 

continuous variable) [54, 108], maternal obesity status [55, 57, 91] and gestational weight gain in 

the early pregnancy [59]. An increasing number of studies started to investigate the intra-

generational association of offspring DNAm at birth or at later time points with their birth 

characteristics and their body size later in life [108-113]. For example, Agha et al. [109] found 

that differential cord blood methylation levels at 34 cytosine-phosphate-guanine dinucleotides 

(CpG sites) were associated with birth weight adjusted for gestational age (z-scores, BW/GA). 

Among these, higher BW/GA was related to higher cord blood DNAm at four CpG sites at the 
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pre-B-cell leukemia homeobox 1 (PBX1) gene, and these positive associations remained stable 

when analyzing peripheral blood DNAm at age 5 years.  

Only two studies attempted to investigate the potential mediating role of DNAm in the 

association between maternal BMI and birth outcomes. Using a candidate gene approach, Burris 

et al. [108] found that in cord blood methylation of the aryl-hydrocarbon receptor repressor 

(AHRR) gene showed a positive association with maternal BMI and negative associations with 

gestational age and birth weight-for-gestational age. Furthermore, using the approach of 

epigenome-wide association studies (EWAS), Sharp et al. [57] found supporting evidence that 

maternal underweight/obesity was associated with altered cord blood DNAm in the offspring. 

Their subsequent analysis suggested that the identified CpG sites may later influence offspring 

adiposity, including birth weight, and other body size measures in childhood and adolescence, 

though none of the individual CpG sites survived after correction of multiple testing [57]. The 

directions of the associations varied for cord blood DNAm at different CpG sites. Hence, a few 

current studies suggest that DNAm in offspring blood may act as a mediator between intrauterine 

conditions and offspring health outcomes.  

More studies are needed to test whether epigenetics plays a role in mediating the effect of 

maternal BMI on birth outcomes and body size in the offspring. Moreover, when assessing the 

associations between differential methylations and maternal or offspring features, the majority of 

current studies examined cord blood DNAm at birth and only a few studies used DNAm at later 

age. The direction of associations of differential methylations with maternal or offspring features 

varied for different CpG sites within and between studies [57, 61, 92, 108, 109, 111, 113]. So far, 

no study has attempted to examine the potentially persistent effect of grand-maternal BMI on 

GBW via maternal DNAm over three generations. Hence, the goal of this study is to identify 
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differential methylation of CpG sites that may link grand-maternal BMI and GBW (mediation). 

This is the first study to use structural equation modeling (SEM) to investigate whether the 

identified CpG sites mediate the transgenerational effect between grand-maternal BMI and 

GBW. As a secondary goal, I intend to assess whether maternal DNAm mediates the 

transgenerational effect between grand-maternal smoking during pregnancy and GBW, since we 

previously found that grand-maternal smoking indirectly decreased GBW. Data comes from the 

Isle of Wight (IoW) birth cohort in the UK [78], which prospectively collected three-generation 

data, and thus allows me to investigate direct and indirect (mediating) effects of grand-maternal 

BMI in the maternal line on offspring’s birth weight using SEM.  

 

Methods 

The Isle of Wight Birth Cohort 

The IoW birth cohort was established to study the natural history and etiology of asthma 

and allergic diseases on Isle of Wight, UK in 1989. The IoW study recruited 1,536 mother-child 

dyads (F0 and F1 generations) between January 1, 1989 and February 28, 1990. Among these, 

1,456 (94.8%) were enrolled after exclusion of adoptions, perinatal deaths and refusals. The F1 

children were followed up at the ages of 1 (n = 1,167), 2 (n = 1,174), 4 (n = 1,218), 10 (n = 

1,373), 18 years (n = 1,313), and 26 years (n = 1,033). Each F1 child was followed-up with 

detailed questionnaires and clinical examinations. F1 females and spouses of F1 males who 

became pregnant after age 18 were followed up for their delivery. Offspring, the F2 generation, 

are currently under follow-up (n = 472). Detailed questionnaires were again completed for each 

F2 child at follow-up visits. This birth cohort has been described in detail elsewhere [80, 81]. 

The IoW study was approved repeatedly by the local research ethics committee (NRES 
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Committee South Central – Hampshire B, U.K.), as well as University of Memphis Institutional 

Review Board in Memphis, U.S. (FWA00006815). Written informed consents were obtained 

from all participants at recruitment and all follow-ups.  

I am interested in the roles of maternal grandmother’s BMI and smoking during 

pregnancy on offspring birth weight, as well as their mediating effects via the maternal line. 

Among the total of 472 F2 children, I focused our analysis on F2 offspring (n = 355) who were 

delivered by F1 females. Concentration on F1 cohort mothers provided me with the 

prospectively collected data in F0 and F1 (Figure 2). 

 

Measurements 

Outcome. F2 grandchild’s birth weight in kilograms was measured at birth and collected 

from birth records.  

Exposure of Interest. Information on F0 pre-pregnancy height and weight was used to 

calculate maternal grandmother’s pre-pregnancy BMI as weight in kilograms divided by the 

square of height in meters. A secondary exposure of interest is grand-maternal smoking status 

during pregnancy, which was reported by F0 grandmothers at enrollment.  

Potential Mediators. Information on F1 mother’s smoking status during pregnancy was 

obtained via questionnaires, which asked the participant about the number of cigarettes smoked 

during each trimester. The total number of cigarettes that F1 mothers smoked throughout the 

three trimesters was calculated using data from each trimester. Then the number was grouped 

into three levels: no smoking, light smoking (total number of cigarettes smoked during 

pregnancy between 1 and 9), and heavy smoking (total number of cigarettes smoked during 

pregnancy at or above 10). 



 53 

DNA methylation data. Potential mediators also included differential DNA methylations 

associated with both grand-maternal exposure and grandchild’s birth weight. To measure DNAm 

levels, DNA was extracted from whole blood samples using a simple salting out procedure. For 

F1 generation, peripheral blood samples were collected at age 18 years (n = 370). The extracted 

DNA was bisulfite-treated for cytosine to thymine conversion using the EZ 96-DNA methylation 

kit (Zymo Research, CA, USA). Genome-wide DNAm was assessed by the Infinium 

HumanMethylation450 beadchip interrogating over 485,000 methylated cysteine in cytosine-

phosphate-guanine (CpG) dinucleotides sites associated with approximately 24,000 genes 

(Illumina, San Diego, CA, USA). Arrays were processed following a standard protocol. To 

assess array variability, multiple identical control samples were assigned to each bisulfite 

conversion batch. Samples were randomly distributed on microarrays to control for batch effects. 

BeadStation was used to scan the beadchips, and for each queried CpG site, the methylation 

levels (beta values) were calculated using the Methylation Module of BeadStudio software. After 

the cleaning of DNAm data, the beta () values represented by the proportion of the methylated 

(M) sites over the sum of methylated (M) and unmethylated (U) sites ( = M/(c+M+U), with c as 

a constant to preventing dividing by zero) were used to estimate DNAm levels. 

Covariates. Several covariates were included in the screening analysis and/or SEM model 

described below. First, gender for F2 babies was collected from birth records. Second, based on 

the method developed by Houseman [114], we estimated cell-type proportions, which was used 

in the screening steps described below, using the minfi package [115] in R. The proportions of 

the following cell types were estimated in each sample: B cells, CD8 T cells, CD4 T cells, 

natural killer cells, neutrophils, monocytes and eosinophils. Note that cell-type proportions were 

only included in the screening analysis described below. 
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Statistical Analysis 

Descriptive analyses were conducted to describe the characteristics of participants. To 

identify the potential CpG sites, whose DNAm may mediate the association between F0 maternal 

grandmother’s BMI and F2 offspring birth weight, I applied two steps of screening analyses. The 

initial epigenome-wide screening was performed using the ttSceening package in R [116] to 

select the potential CpG sites measured in F1 at 18 years that were associated with F0 grand-

maternal BMI. F0 grand-maternal BMI was used as the main predictor and F1 maternal DNAm 

at age 18 (M-values) as the outcome. I examined four models: Model 1 included the main 

predictor only; model 2 adjusted for estimated cell-type proportions; model 3 adjusted for F0 

grand-maternal smoking during pregnancy; and model 4 adjusted for the covariates in models 2 

and 3. For each model, the CpG sites with a p-value < 0.05 and a selection probability of 70 

percent or above were selected. In order to obtain a robust set of CpG sites that were associated 

with grand-maternal BMI, only the common CpG sites found in all four models were allowed for 

the second step of the screening process. Robust regression in SAS was performed for the second 

screening step. Each of the common CpG sites was used as the main predictor and F2 offspring’s 

birth weight as the outcome. Similarly, I examined four models: Model 1 included the main 

predictor only; model 2 adjusted for estimated cell-type proportions; model 3 adjusted for the 

following covariates: F1 maternal birth weight, BMI at age 18, smoking during pregnancy, and 

F2 offspring’s gender; and model 4 adjusted for the covariates in models 2 and 3. For each 

model, the CpG sites with a false discovery rate (FDR) adjusted p-value < 0.05 were selected. 

Again, to obtain a robust set of CpG sites that were associated with GBW, only the common 

CpG sites found in all four models were selected for subsequent analysis. The above two 

screening steps were repeated when I attempted to identify the potential CpG sites whose DNAm 
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that may mediate the association between F0 grand-maternal smoking during pregnancy and F2 

grandchild’s birth weight. 

Focusing on CpG sites that passed both screening steps, I performed path analysis, a 

special case of structural equation modeling [83, 84], to assess whether F1 maternal DNAm at 

age 18 (β-values*100%) mediated the association between grand-maternal BMI and offspring 

birth weight. SEM was used to estimate the direct, indirect, and total associations between 

exogenous and endogenous variables. In this analysis, F1 maternal BMI was not included in the 

model because maternal BMI and DNAm levels were measured concurrently at age 18. I started 

with a full model including all reasonable paths, and then I dropped paths one at a time according 

to stepwise multivariate Wald test, until a parsimonious model was reached. The full information 

maximum likelihood (FIML) method was applied to incorporate incomplete observations into 

the analysis [85, 86]. I evaluated the goodness of fit using the following criteria: 1) p-value > 

0.05, 2) standardized root mean square residual (SRMR) < 0.08, 3) adjusted goodness of fit 

(AGFI) > 0.95, and 4) root mean square error of approximation (RMSEA) < 0.05. All analyses 

were performed using Statistical Analysis System (SAS 9.4, Cary, NC, USA) and R 3.3.1 with 

ttScreening package. 

 

Results 

The total sample had 1536 pairs of F0 grandmother and F1 generation (including both F1 males 

and females) and 472 grandchildren. This analysis focused on F0 maternal grandmothers, not 

paternal grandmothers, and female participants in the F1 generation who have delivered at least 

one child. Since F1 mothers may have delivered more than one child, the analytical sample 

included 209 grandmother-mother dyads and 355 grandchildren. Characteristics of the total 
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sample and analytical sample are presented in Table 5. Note that results related to F2 

grandchild’s birth weight are presented in grams. Compared to the total sample, grandmothers in 

the analysis sample had a significantly higher percentage of smoking during pregnancy (34.1% 

vs. 23.8%, p = 0.006; Table 5). For the analysis sample, I compared characteristics of F0 

grandmothers to those of F1 mothers. In total, 34.1% of F0 grandmothers smoked during 

pregnancy whereas 17.9% and 21.8% of F1 mothers were light and heavy smokers during 

pregnancy, respectively. A Chi-square test showed that F0 grand-maternal smoking was 

significantly associated with F1 maternal smoking during pregnancy (p = 0.003, data not shown). 

Of the F2 offspring, 54.7% are male. 
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Table 5. Comparison of population characteristics between the total sample and analytical sample 

Continuous variables 
 

Total sample a 

(n=1536; 472) 
 

Analysis sample b 

(n=209; 355) 
 

p-value c 

 N Mean (SD)  n Mean (SD)  

Grand-maternal BMI (kg/m2)  1175 24.43 (4.20)  158 25.11 (5.05)  0.21 

Maternal DNAm (cg01481989; %)  476 16.27 (2.24)  77 16.20 (2.46)  0.55 

Maternal DNAm (cg13595777; %)  476 6.67 (1.06)  77 6.71 (1.07)  0.70 

Cell-type proportions (%)  476   77    

CD8 T cell   8.00 (5.41)   7.82 (4.51)  0.76 

CD4 T cell   12.07 (4.48)   12.13 (4.05)  0.91 

Natural killer cell   7.27 (5.89)   7.98 (6.71)  0.55 

B cell   4.75 (3.38)   3.40 (2.30)  0.002 

Monocytes   7.39 (2.31)   7.28 (2.16)  0.71 

Neutrophils   59.99 (10.44)   60.15 (10.22)  0.71 

Eosinophils   0.15 (1.14)   0.03 (0.26)  0.19 

Grandchild’s birth weight (g)  342 3371.37 (554.71)  263 3358.81 (573.64)  0.79 

Categorical variables  N N (%)  n n (%)  p-value d 

Grand-maternal smoking status  1521   208   0.006 

No   1137 (74.7)   137 (65.9)   

Yes   384 (25.3)   71 (34.1)   

Maternal smoking status  427   325   0.85 

No smoking   265 (62.1)   196 (60.3)   

Light smoking   70 (16.4)   58 (17.9)   

Heavy smoking   92 (21.5)   71 (21.8)   

Grandchild’s gender  444   333   0.88 

Male   245 (55.2)   182 (54.7)   

Female   199 (44.8)   151 (45.3)   

Abbreviation: SD, standard deviation; BMI, body mass index; and DNAm, DNA methylation. 
a The sample size of the total sample for F0 and F1 generations is 1536, and that for F2 generation is 472. 
b The sample size of the analysis sample for F0 and F1 generations is 209, and that for F2 generation is 355. 

c Two-sample t-test or Wilcoxon rank-sum test. 
d Chi-square test. 
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Screening analysis 

Two-step screening analyses were performed to identify potential CpG sites that were 

associated with F0 grand-maternal BMI and F2 birth weight in the grandchildren. For the first 

screening step, the epigenome-wide screening analysis identified 53 common CpG sites 

associated with F0 grand-maternal BMI across four models (with a selection proportion >= 70% 

and a p-value < 0.05; Supplement Table 3). Among the 53 identified CpG sites, F0 grand-

maternal BMI was negatively associated with F1 maternal DNAm at age 18 at 42 CpG sites 

(79.2%, using results of Model 4; Supplemental Table 4).  

For the second screening step, I conducted four robust regression models (with or without 

cell-type proportions and/or other variables as covariates) to assess whether the CpG sites 

identified in the first step were also associated with F2 grandchild’s birth weight (Supplement 

Table 3). Two CpGs cg01481989 (FRZB) and cg13595777 (RFK) of F1 maternal methylation 

levels at age 18 at were consistently identified across four models with a FDR-adjusted p-value 

smaller than 0.05. Table 6 shows that maternal methylation levels of both CpG sites at age 18 

were negatively associated with grand-maternal BMI and offspring birth weight. The means and 

standard deviations for methylation levels (%) at cg01481989 and cg13595777 were 16.02 (2.29) 

and 6.80 (1.15). Both CpGs are correlated (Pearson correlation: rho = 0.21, p = 0.01). 

In addition, I also applied the above two-step screening analyses to identify potential CpG sites 

associated with both F0 grand-maternal smoking during pregnancy and F2 birth weight in the 

grandchildren. However, I was unable to find any CpG sites that passed both screening steps 

(Supplemental Table 5). 
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Table 6. The two CpG sites of differential methylations at age 18 that are associated with grand-maternal BMI and grandchild’s birth 

weight in the two screening steps (using results from model 4) 

CpG CHR 
Gene 

name 

Gene 

group 

Relation to 

CpG 

Island 

Step 1: Association with grand-

maternal BMI a 

 Step 2: Association with 

grandchild’s birth weight b 

β p-value 
Selection 

proportion 

 

β 

FDR-

adjusted p-

value 

cg01481989 2 FRZB 1stExon Island -0.0180 1.70E-05 86  -900.2 0.001 

cg13595777 9 RFK TSS1500 Island -0.0196 5.51E-05 77  -850.4 0.005 

Abbreviation: BMI, body mass index; and FDR, false discovery rate. 
a I presented the results of the effect of F0 grand-maternal BMI on F1 differential methylations at age 18, using model 4 that adjusted 

for grand-maternal smoking during pregnancy and cell-type proportions. 
b I presented the results of the effect of F1 differential methylations at age 18 on F2 grandchild’s birth weight, using model 4 that 

adjusted for F1 maternal birth weight, BMI at age 18, smoking during pregnancy, and F2 offspring’s gender and cell-type proportions. 
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Figure 5. Path diagram showing the mediating effect of DNA methylation at age 18 on the association between grand-maternal BMI 

and grandchild’s birth weight (n=355). Note: 2 (12) = 8.88, p = 0.71; SRMR = 0.04; AGFI = 0.96; RMSEA = 0.00. This figure 

reports significant direct and indirect effects and insignificant effects were not reported, and p-values are in parentheses. Solid lines 

refer to direct effects; dotted lines refer to indirect effects. I did not use square box because only manifest variables were included.
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Table 7. Analytical path model showing the unstandardized coefficients for the mediating effect of DNA methylation at age 18 on the 

association between grand-maternal BMI and grandchild’s birth weight (n=355) a 

 
F0 grand-

maternal BMI 

F0 grand-

maternal 

smoking status 

F1 

cg01481989 at 

age 18 b 

F1 

cg13595777 

at age 18 b 

F1 smoking 

status 
F2 gender 

F1 cg01481989 at age 

18 
      

Direct -0.17 (0.0001) – – – – – 

Indirect – – – – – – 

Total -0.17 (0.0001) – – – – – 

F1 cg13595777 at age 

18 
      

Direct -0.07 (0.001) – – – – – 

Indirect –  – – – – 

Total -0.07 (0.001)  – – – – 

F1 smoking status       

Direct – 0.25 (0.008) – – – – 

Indirect – – – – – – 

Total – 0.25 (0.008) – – – – 

F2 birth weight       

Direct -13.40 (0.18) 67.60 (0.33) 
-79.60 

(0.0005) 

-135.50 

(0.002) 

-130.00 

(0.002) 

-71.90 

(0.28) 

Indirect 22.90 (0.007) -32.50 (0.04) – – – – 

Total 9.50 (0.24) 35.10 (0.62) 
-79.60 

(0.0005) 

-135.50 

(0.002) 

-130.00 

(0.002) 

-71.90 

(0.28) 

Abbreviation: BMI, body mass index. 
a Values presented in the above table are unstandardized regression coefficients (β) and p-values (in parentheses). 
b One percent change in F1 DNA-M at age 18. 
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Structural equation model analysis 

To describe the association paths from SEM, I used direct, indirect and total effects. The 

sum of direct and indirect effects constitutes the total effect. Indirect effect is mediated by a third 

variable. 

Figure 5 displays the paths of structural equation model using F1 maternal methylation of 

cg01481989 and cg13595777 at age 18 as mediators, along with maternal birth weight and 

smoking status during pregnancy. The model fitted the data well (2 (12) = 8.88, p = 0.71; 

SRMR = 0.04; AGFI = 0.96; RMSEA = 0.00; Figure 5). F1 maternal methylation levels of 

cg01481989 at age 18 decreased by 0.17% per 1 kg/m2 increase in F0 grand-maternal BMI (p = 

0.0001; Table 7). Every percent increase in F1 maternal methylation levels of cg01481989 at age 

18 resulted in 79.60 grams of decrease in F2 GBW (p = 0.0005). F0 grand-maternal BMI was 

negatively associated with F1 maternal methylation levels at cg13595777 ( = -0.07%, p = 

0.0008). Every percent increase in F1 maternal methylation levels at cg13595777 also 

significantly contributed to a decrease in F2 GBW by 135.50 grams (p = 0.002). I identified an 

indirect and positive association between F0 maternal grandmother’s BMI and F2 offspring birth 

weight (β = 22.90 grams of increase in F2 GBW per 1 kg/m2 increase of grand-maternal BMI, p 

= 0.007). This transgenerational association resulted from the mediating (indirect) effects of F1 

maternal methylation levels of cg01481989 and cg13595777 at age 18. However, the total and 

direct associations between F0 grand-maternal BMI and F2 GBW were statistically insignificant 

(total effect: β = 9.50 grams, p = 0.24; direct effect: β = -13.40 grams, p = 0.18). It is worth 

noting that I included maternal birth weight and maternal BMI at age 18 as additional mediators 

in the full model. However, I excluded them from the final model because they neither 

contributed to the model fit, nor helped explain the mediating pathways.  
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I also identified a decreasing and indirect association between F0 grand-maternal 

smoking during pregnancy and F2 GBW (β = -32.50 grams, p = 0.04; Table 7), mediated by 

maternal smoking during pregnancy (F0 grand-maternal smoking during pregnancy → F1 

maternal smoking level during pregnancy → F2 GBW). If F0 grandmothers smoked during 

pregnancy, F1 mothers of F2 offspring were more likely to smoke during pregnancy ( = 0.25, p 

= 0.008). A higher F1 maternal smoking level during pregnancy reduced F2 GBW by 130.00 

grams (p = 0.002). There were neither statistically significant total nor direct associations 

between F0 grand-maternal smoking during pregnancy and F2 GBW (total effect: β = 35.10, p = 

0.62; direct effect: β = 67.60 grams, p = 0.33). 

 

Discussion 

The findings of this study focus on the maternal grandmothers, not paternal 

grandmothers, and on female participants in the F1 generation who had an F2 offspring. Using 

the prospectively collected three-generation data, I identified 53 differentially methylated CpG 

sites in mother’s peripheral blood at age 18 to be associated with maternal grandmother’s pre-

pregnancy BMI. Among these, two CpG sites of cg01481989 and cg13595777 were negatively 

associated with offspring birth weight. SEM results show that maternal methylation levels of 

cg01481989 and cg13595777 at age 18 mediated the positive association between grand-

maternal BMI and GBW. Additionally, I found that the negative and indirect association 

between grand-maternal smoking during pregnancy and GBW was mediated by maternal 

smoking level during pregnancy. Neither direct nor total effects were statistically significant 

between grand-maternal BMI and GBW, or between grand-maternal smoking during pregnancy 

and GBW. A mediator can have a suppressing effect, also called confounding mediation, when 
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the direct and indirect effects of an exposure on an outcome have opposite signs [88, 89]. The 

opposite effects with relatively similar effect sizes may cancel out each other and lead to an 

insignificant but meaningful total effect. The three mediators in this study (i.e., maternal DNAm 

at cg01481989 and cg13595777 and maternal smoking level during pregnancy) all had 

suppressing effects. Thus, the significant indirect effects were still meaningful and of importance 

even if the direct and total effects were not statistically significant.  

This is the first study using structural equation modeling formally assessing the mediating 

role of maternal DNAm in the association between grand-maternal BMI and offspring birth 

weight across three consecutive generations. As a novel finding, I demonstrated that a higher 

grand-maternal BMI was associated with higher grandchild’s birth weight, via the mediating 

effects of maternal DNAm at cg01481989 (FRZB) and cg13595777 (RFK) in early adulthood. In 

contrast, Sharp et al. [57] identified a number of CpG sites associated with maternal 

obesity/underweight (compared to maternal normal weight), but none of them was 

simultaneously and significantly related to offspring adiposity. Although Burris et al. [108] 

reported that cord blood AHRR DNAm was linked to maternal BMI, infant gestational age and 

birth weight-for-gestational age, this study did not consider causal analysis such as SEM and 

Mendelian randomization. More studies are needed to confirm the mediating role of offspring 

DNAm, and I am currently contacting other cohort studies to replicate our findings. 

As one of the mediators affecting the association between grand-maternal BMI and 

offspring birth weight, cg01481989 is annotated to Frizzled Related Protein (FRZB, also known 

as Secreted Frizzled-Related Protein 3 [SFRP3]), the protein encoded by which is a secreted 

protein involved in the regulation of bone development [117-119]. For example, FRZB was one 

of the differentially expressed genes in dermal fibroblasts from children with Apert syndrome 
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[119]. This indicated changes in the WNT signaling pathway, suggesting increased osseous 

differentiation. In addition, FRZB has also been reported in humans and animals to be associated 

with other growth characteristics or diseases, such as muscular dystrophy [120-122], heart 

defects [123, 124], adipogenesis [125], and pancreatic cancer [126]. Another mediator of 

cg13595777 is annotated to RFK encoding riboflavin kinase. It is an essential enzyme catalyzing 

the phosphorylation of riboflavin (vitamin B2) to form the active cofactor flavin mononucleotide 

(FMN), which can be further converted to flavin adenine dinucleotide (FAD) [127]. The studies 

linking RFK to diseases were limited. RFK was one of the validated transcripts engaging in male 

sexual development during early chicken embryogenesis [128]. A case report presented that 

riboflavin deficiency in the mother during pregnancy could be the reason causing the female 

infant born with transient multiple acyl-CoA dehydrogenation deficiency [129], which is an 

autosomal recessive disorder of fatty acid and amino acid oxidation metabolism. Interestingly, 

both genes (FRZB and RFK) are involved in intra-uterine development. 

I compared the identified 53 sites, including cg01481989 and cg13595777, with those 

reported in a few previous studies using late adolescent DNAm with a mean age ranging between 

16 and 17 [57, 61, 92]. However, I was unable to find any overlapping CpGs. This is mainly 

because no CpG sites in EWAS studies survived after multiple testing [57, 92]. In a study using 

candidate gene approach, Richmond et al. [61] found offspring HIF3A DNAm at only 

cg27146050 was positively associated with maternal BMI. Although cg27146050 did not pass 

the screening criteria in our study, the direction was also positive (data not shown). Another 

relating reason could be that our DNAm data were extracted at early adulthood (age 18), which 

is slightly older than other studies.  
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Current findings suggest that intrauterine effects of maternal BMI on offspring DNAm, in 

general, do not persist from birth to later life. For example, Sharp et al. [57] showed that the 

influence of maternal BMI on altered cord blood DNAm was likely to be transient since the 

numbers of CpG sites identified in childhood and adolescence in relation to maternal BMI were 

much lower or even nonexistent. Richmond et al. [61] found that only one CpG site, 

cg27146050, of gene HIF3A was consistently associated with maternal BMI, from birth to 

childhood and late adolescence. Using IoW birth cohort data, I found no significant correlation 

between the methylation levels at cg01481989 and cg13595777 in early adulthood and those at 

birth or childhood. Instead, the methylation levels of cg01481989 and cg13595777 were 

significantly correlated with each other at birth and at early adulthood (Pearson correlation: rho = 

0.79, p < 0.0001 for birth; and rho = 0.21, p = 0.01 for age 18; Supplemental Figure 1). This 

indicates that DNAm can have a large variability longitudinally from birth to adulthood, but the 

correlation between the methylation levels at different CpG sites is more likely to persist. It 

might be beneficial for future studies to use offspring DNAm data at older age when studying its 

relationship with maternal BMI.  

This study has several strengths. First, this is the first study to use SEM to evaluate the 

mediating effect of DNAm on the transgenerational association between grand-maternal BMI 

and GBW. Second, in contrast to previous studies using traditional multiple testing methods 

(such as FDR- based or Bonferroni-based methods), I applied ttScreening package in R to select 

related CpG sites, which produces a smaller number of incorrect detections by controlling for 

type I and II errors at the same time [116]. Third, unlike many previous studies using only cord 

blood DNAm, I was able to used DNAm at early adulthood (age 18) to assess its relations with 

maternal BMI and offspring birth weight. Fourth, using path analysis facilitated the evaluation of 
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both direct and indirect effects of grand-maternal BMI on GBW, as well as the separation of 

mediating and confounding effects. Fifth, using FIML method in PROC CALIS in SAS enabled 

me to incorporate observations with missing data on some variables [85, 86]. This study is not 

without limitations. First, the sample size in this study was small with 209 pairs of grand-

mothers and mothers and 355 grandchildren. Despite that I used FIML method in PROC CALIS 

in SAS to incorporate observations with missing data on some variables [85, 86], findings of this 

study need to be replicated in a larger cohort with a better statistical power. Second, some F1 

mothers delivered more than one child, and grandchildren within the same family could have 

some unknown but common characteristics. Using path analysis did not allow me to account for 

the random effect of family clusters. Third, the mean F1 maternal age of 23.1 years at delivery 

was younger in this study than the mean age of 28.8 years in 2016 from the national statistics in 

UK [99]. This was due to the study setting, which was based on the first pregnancies of F1 

cohort mothers in contrast to including all pregnancies of a representative group of mothers in 

the F0 generation. Fourth, I was only able to analyze the data in the maternal line (i.e., F1 cohort 

mothers and their mothers and children), because of the lack of information regarding paternal 

BMI from F1 cohort males. Although previous studies demonstrated that paternal obesity was 

less important than maternal obesity in the association with cord blood DNAm [57] and fat mass 

[130] in the offspring, the paternal line still deserves further examination.  

In conclusion, in this prospectively collected three-generation birth cohort, grand-maternal BMI 

was more likely to be negatively associated with CpG sites in early adulthood of F1 mothers. 

Two of these CpG sites at cg01481989 and cg13595777, representing genes that are involved in 

intra-uterine development, were also negatively associated with offspring birth weight. Using 

SEM, this study is the first to discover an underlying model where maternal methylation levels at 
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cg01481989 and cg13595777 in early adulthood mediated the association between grand-

maternal BMI and offspring birth weight. These findings should be treated with caution since 

future studies are needed to replicate our results in a different three-generation cohort. 
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Chapter 5 

Summary 

Birth weight has been recognized as an important predictor for diseases in later life, such 

as obesity, diabetes, lung function, hypertension and cardiovascular diseases [1-6]. In this 

dissertation, my interest is in understanding what are factors determined in previous generations 

that may have long-term effects on birth weight in offspring. Among the multiple possibilities, I 

was interested in two understudied factors, i.e., maternal grandmother’s body mass index (BMI) 

before pregnancy and socioeconomic status (SES). However, a third factor had to be taken into 

consideration, namely grand-maternal smoking during pregnancy, as it has been identified as an 

important confounder in several studies and is linked to grandchild’s birth weight (GBW) [27-29, 

31]. In addition to these three potential factors, I investigated whether transgenerational 

association between grand-maternal risk factors and GBW was mediated by risk factors in the 

maternal generation. First, the potential intervening (mediating) factors included phenotypic 

variables such as maternal birth weight, maternal BMI, maternal SES, and maternal smoking 

levels. Second, since I was interested to determine the hidden role of epigenetic factors, I also 

included DNA methylation (DNAm) at multiple sites as potential mediators.  

This dissertation was based on the prospectively collected three-generation data from the 

Isle of Wight birth cohort study in UK. The final analysis sample focused on the maternal line 

and included 209 grandmother-mother dyads and 355 grandchildren. To address the direct and 

indirect effects of grand-maternal risk factors on birth weight in their grandchildren, I performed 

structural equation modeling (SEM) in each of the following three specific aims. 

Specific Aim 1 (SA1) evaluated the association between maternal grandmother’s pre-

pregnancy BMI and grandchild’s birth weight and whether this association can be mediated by 
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maternal factors, including maternal birth weight and BMI at early adulthood (age 18). Using 

structural equation models, I found a positive and indirect effect of maternal grandmother’s pre-

pregnancy BMI on birth weight of their grandchildren. This transgenerational effect was 

mediated by maternal birth weight and BMI at age 18. However, there was no direct effect 

between grand-maternal BMI and GBW. The total effect, which is the sum of the direct and 

indirect effects, also did not gain statistical significance. The is the first study reporting a positive 

and indirect association between grand-maternal BMI and offspring birth weight via mediating 

effect of maternal birth weight and BMI at age 18. In contrast, only one previous study by 

Harville et al. [24] tried to address this transgenerational effect, but they did not use path-

analytical models and failed to find a significant association.  

Another novel finding from SA1 was that grand-maternal smoking during pregnancy 

indirectly decreased birth weight in the grandchildren, dependent on maternal birth weight and 

maternal smoking level during pregnancy in the intermediate generation. Both indirect paths 

were statistically significant. However, there was no direct effect between grand-maternal 

smoking during pregnancy and GBW. The total effect, the sum of the direct and indirect effects, 

did not gain statistical significance either. Although the association between maternal gestational 

smoking and offspring birthweight was found to be negative in multiple studies [79], prior 

investigations reported a positive association between grand-maternal smoking during pregnancy 

and GBW [27-29, 31]. This was likely to result from using conventional statistical methods and 

assessing the joint (combined) effect of grand-maternal and maternal smoking. The limitation 

with such approaches is that grand-maternal and maternal smoking are associated, and not 

independent risk factors. 
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Regarding the association of grand-maternal BMI and birth weight, findings of this study 

provided support for the hypothesis of transmission of obesity in a family. Given the high and 

increasing prevalence of obesity around the world, especially in developed countries, it is urgent 

for developed countries to educate the public in terms of the importance of keeping a healthy 

body weight in order to prevent obesity in their offspring.  

Specific Aim 2 (SA2) intended to assess whether the effect of grand-maternal SES on 

birth weight in the grandchildren is direct or indirect via different mediating pathways. Using 

SEM, I was unable to find a significant association, either direct or indirect, between grand-

maternal SES and GBW. Maternal risk factors, including maternal birth weight, adulthood SES 

and smoking during pregnancy, were not identified as mediating pathways. This suggests that the 

effect of maternal SES on offspring birth weight is likely to be transient and does not persist into 

more than two generations. Similar to the results in SA1, I also found a decreasing and indirect 

association between F0 grand-maternal smoking during pregnancy and GBW, dependent on 

maternal birth weight and maternal smoking during pregnancy in the F1 generation.  

 From the above two studies, I may conclude that grand-maternal BMI and smoking 

during pregnancy are important predictors for birth weight of their grandchildren and may have 

profound and persistent influences on future generations. Meanwhile, my interest was to better 

understand whether transgenerational associations between the above two grand-maternal risk 

factors and GBW have shared biological mechanisms. DNA-methylation (DNAm) of various 

sites has been suggested to bridge the early-life environment with adult diseases [51, 52]. DNAm 

involves a dynamic process of addition of methyl groups to cysteine, where cytosine-phosphate-

guanine (CpG) dinucleotides occur in the DNA sequence, or their demethylation [131]. Hence, 

next I investigated whether maternal DNAm acted as mediating pathways. 
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In Specific Aim 3 (SA3), I investigated whether maternal DNAm in early adulthood (age 

18 years) mediated the associations 1) between grand-maternal BMI and offspring birth weight 

and 2) between grand-maternal smoking during pregnancy and offspring birth weight, 

respectively. For each of the two grand-maternal risk factors, I conducted two-step screening 

analyses to assess the associations of maternal DNAm at age 18 with grand-maternal risk factor 

and GBW. For the first step, I used a screening approach, (i.e., ttScreening package in R), to 

select CpG sites associated with grand-maternal risk factor. For the second step, I used robust 

regression to further evaluate whether their methylation levels at the identified CpGs were 

related to GBW. Only the CpG sites that passed both screening analyses were taken forward to 

the next step. Then I used structural equation models to formally assess whether the maternal 

DNAm at the identified CpG sites mediated the association between grand-maternal risk factor 

and GBW. 

In terms of grand-maternal BMI, I identified 53 differentially methylated CpG sites in 

mother’s peripheral blood at age 18 years to be associated with maternal grandmother’s pre-

pregnancy BMI. Among these, two CpG sites (cg01481989 and cg13595777) were found to be 

negatively associated with offspring birth weight using robust regression. Next, results of the 

SEMs showed that maternal methylation levels of cg01481989 (FRZB) and cg13595777 (RFK) 

at age 18 years mediated the positive association between grand-maternal BMI and GBW. In an 

explanatory model including both CpGs, grand-maternal smoking during pregnancy was also 

included as a potential confounder. I found that the negative and indirect association between 

grand-maternal smoking during pregnancy and GBW can be mediated via two potential 

pathways: one pathway included maternal smoking level during pregnancy in the mediating 

pathway, and the other included maternal birth weight and maternal methylation levels of 



 73 

cg13595777 at age 18. There was no direct effect between grand-maternal BMI and GBW. The 

total effect, the sum of the direct and indirect effects, did not gain statistical significance either.  

However, the two CpG sites did not link grand-maternal smoking during pregnancy and 

GBW. Although results of SA3 need to be replicated, this study showed that a higher grand-

maternal BMI could alter the maternal DNAm in early adulthood, which in turn increased 

grandchild’s birth weight. However, there was neither total nor direct effect between grand-

maternal BMI and GBW. 

This is the first study using structural equation modeling formally assessing and 

documenting the mediating role of maternal DNAm at cg01481989 and cg13595777 in the 

association between grand-maternal BMI and offspring birth weight across three consecutive 

generations. In contrast to previous studies using traditional multiple testing methods (such as 

FDR-based or Bonferroni-based methods), ttScreening package used in this analysis was able to 

identify related CpG sites and produce a smaller number of incorrect detections by controlling 

for type I and II errors at the same time [116]. The gene FRZB of cg01481989 was previously 

reported to be related to bone development other growth characteristics or diseases [119-126] 

whereas gene RFK of cg13595777 was linked to male sexual development during early chicken 

embryogenesis [128]. These findings should be treated with caution as they need to be replicated 

in a larger cohort. However, the biological role of these two CpG sites seems to support their role 

as mediators of intrauterine growth and birth weight.  

Summarizing the results from the above three projects, I discovered several suppressing 

effects. First, the suppressing effect of maternal DNAm at two CpG sites in early adulthood 

mediated the positive association between grand-maternal BMI and GBW. Second, the adverse 

association between grand-maternal smoking during pregnancy and birth weight of 
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grandchildren involved the following suppressing mediators: 1) maternal birth weight and 2) 

maternal smoking during pregnancy. Suppression effect, also called confounding mediation, 

refers to inconsistent but still meaningful mediating effects when the direct and indirect effects 

have opposite signs [88]. Due to the suppressing mediation effect of maternal birth weight, 

DNAm in early adulthood and smoking during pregnancy, the direct and indirect effect with 

opposite signs and relatively similar effect sizes may cancel out each other and lead to an 

insignificant total effect. Thus, the significant indirect effect was still meaningful and of 

importance even if the direct and total effects were statistically insignificant. 

This dissertation has several strengths. First, this prospective birth cohort study enabled 

me to assess the transgenerational effect of grand-maternal risk factors on GBW across three 

consecutive generations. There is a clear and forward time order with the exposures, mediators 

and outcome. Second, unlike traditional regression models, using structural equation modeling 

facilitated me to analyze the direct, indirect and total effects between grand-maternal risk factors 

and grandchild’s birth weight, as well as separate mediating and confounding effects and address 

confounding mediation. Third, using FIML method in PROC CALIS in SAS enabled me to 

incorporate observations with missing data on some variables [85, 86]. There are some 

limitations. First, the sample size in this study was small with 209 pairs of grand-mothers and 

mothers and 355 grandchildren. Second, some F1 mothers delivered more than one child, and 

children within the same family could have some unknown but common characteristics. Using 

SEM in this dissertation did not allow me to account for the random effect of family clusters. 

Third, the mean F1 maternal age of 23.1 years at delivery was younger in this study than the 

mean age of 28.8 years in 2016 from the national statistics in UK [99]. This was due to the study 

setting, which was based on the first pregnancies of F1 cohort mothers in contrast to including all 
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pregnancies of a representative group of mothers in the F0 generation. Fourth, I was only able to 

analyze the data of the maternal line (i.e., F1 cohort mothers and their mothers and children), 

because of the lack of information regarding grand-paternal risk factors. Although some studies 

showed that the transmission of birth weight and BMI was apparent through the maternal line, 

the transmission in the paternal line still deserves further examination [26, 100-102]. Fifth, I did 

not further assess whether maternal DNAm may mediate the effect of grand-maternal SES on 

GBW, because no significant association between grand-maternal SES on GBW was found in 

SA2. However, it is still possible that maternal DNAm may have a hidden epigenetic effect on 

this association. 

In conclusion (Figure 6), our research demonstrated that a higher grand-maternal BMI indirectly 

increased birth weight in grandchildren. This was due to three potential mechanisms in the 

mother, including maternal birth weight, maternal BMI in early adulthood and maternal DNAm 

at two CpG sites in early adulthood. In addition, grand-maternal smoking during pregnancy was 

predicted to decrease grandchild’s birth weight, probably related to a lower maternal birth weight 

or maternal smoking during pregnancy. However, I did not identify any DNAm sites in early 

adulthood that mediated the transgenerational smoking association. The findings regarding 

maternal DNAm as mediators in the association between grand-maternal BMI and grandchild’s 

birth weight should be treated with caution as they need to be replicated in a larger cohort. 
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Figure 6. Overall findings. Solid lines refer to direct effects; dashed lines refer to indirect effects. 
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Key Messages 

• Maternal birth weight and BMI in early adulthood mediated the positive association 

between grand-maternal BMI and grandchild’s birth weight. 

 

• There was neither direct nor indirect association between grand-maternal SES and birth 

weight in the grandchildren. 

 

• Grand-maternal smoking during pregnancy indirectly reduced grandchild’s birth weight 

via maternal birth weight and maternal smoking during pregnancy. 

 

• Maternal DNAm at cg01481989 and cg13595777 in early adulthood mediated the 

positive association between grand-maternal BMI and offspring birth weight. These 

findings should be treated with caution as replication is needed. 

 

• Instead of using conventional methods, future studies should take into account the 

chronological nature of longitudinal data, and consider using path-analytical models or 

structural equation modeling when assessing the associations between grand-maternal 

risk factors and grandchild’s birth weight. 
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Appendices 

 

Supplementary Figure 1. Correlation between cg01481989 and cg13595777 at birth and at age 18 
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Supplementary Table 1. A list of studies finding an increasing effect of grand-maternal smoking during pregnancy on birth weight of 

grandchildren 

Author, 

Year 
Country Study Population Sample Size 

Statistical 

Methods 
Covariates Results 

Ding et 

al., 2017 

United 

States 

Three cohorts of 

related 

individuals: 

Nurses' Mothers 

Cohort Study, 

Nurses' Health 

Study II and 

Growing Up 

Today Study 2 

6,585 

grandmother-

mother-grandchild 

triads 

Generalized 

estimating 

equation 

regression 

models 

F0: gestational 

age, age at birth, 

level of 

education, 

consumptions of 

alcohol, 

vegetable, fruit, 

meat, physical 

activity, and 

weight gain 

during 

pregnancy. 

Compared to grandchildren 

of non-smoking women, 

grandchildren of women who 

smoked more than 14 

cigarettes per day throughout 

pregnancy were 70 g (95% 

CI: 12, 129 g; P for trend = 

0.01) heavier at birth, and 

18% (95% CI: 4%, 34%; P 

for trend = 0.01) more likely 

to become overweight. * 

Hyppönen 

et al., 

2003 

United 

Kingdom 

1958 Birth 

Cohort Study 

4,302 

grandmother-

mother dyads and 

9,028 

grandchildren 

Linear mixed 

models 

F1: Maternal 

BMI at age 23, 

height as adults, 

birth weight; F2: 

sex, gestational 

age, and birth 

order 

The positive association 

between grand-maternal 

smoking and birth weight of 

grandchildren (45g, 95% CI: 

10, 80g) only exited among 

non-smoking mothers and 

after adjustment for maternal 

birth weight, adult height and 

body mass index. 

Miller et 

al., 2014 

United 

Kingdom 

Avon 

Longitudinal 

Study of Parents 

and Children 

12,707 maternal 

grandmother-

mother-grandchild 

triads and 9,677 

paternal 

grandmother-

Multivariable 

linear 

regression 

models 

F1: Maternal 

parity, maternal 

education, 

partner smoked at 

start of 

pregnancy and 

Among non-smoking 

mothers, maternal 

grandmother’s smoking 

during pregnancy was 

associated with 61 grams 

(95% CI: 30, 92g) increase in 

the mean birth weight of 
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mother-grandchild 

triads  

gestation of study 

child 

grandsons, after adjustment 

for covariates. ^ 

Rillamas-

Sun et al., 

2014 

United 

States 

Michigan Bone 

Health and 

Metabolism 

Study 

320 grandmothers, 

397 mothers and 

935 grandchildren 

Linear mixed 

models 

F0: birth year; 

F1: first born 

status, singleton 

status, birth 

weight, birth 

year, marital 

status, education, 

and adult BMI 

and height; F2: 

first born status 

and sex 

After adjustment, birth 

weight was an average of 346 

grams (95% CI: 64, 628g) 

higher in grandchildren 

whose grandmother and 

mother both smoked during 

pregnancy relative to 

grandchildren whose 

grandmother and mother both 

did not smoke during 

pregnancy, but only among 

grandmothers who were born 

from 1929 to 1945. 

Abbreviation: F0, First generation; F1, Second generation; F2, Third generation; BMI, body mass index; CI, confidence interval. 

* F1 maternal pregnancy BMI and smoking during pregnancy were additionally adjusted for in other models, and the positive 

association between grand-maternal smoking and birth weight of grandchildren remained statistically significant. 

^ The investigators did not control for maternal height, weight, BMI, or maternal birthweight, because they considered this likely to be 

an over-control. 
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Supplementary Table 2. The effect of grand-maternal smoking during pregnancy on grandchild’s birth weight using three 

conventional statistical methods and IoW cohort data 

Statistical methods 
Crude model Adjusted model * 

n (p-value)  (95% CI) n (p-value)  (95% CI) 

Adjustment for covariates 261 (0.75) 27.4 (-139.9, 194.7) 144 (0.10) 221.1 (-48.0, 490.2) 

Stratified analysis using data of non-

smoking mothers only 
150 (0.11) 180.8 (-43.1, 404.7) 91 (0.08) 315.8 (-42.1, 673.8) 

Using an interaction between grand-maternal and maternal smoking during pregnancy 

GM+M+ vs. GM-M- 

249 (0.04) 

-183.9 (-410.0, 42.2) 

144 (0.37) 

129.1 (-251.5, 509.8) 

GM+M- vs. GM-M- 164.1 (-49.0, 377.3) 269.9 (-57.3, 597.0) 

GM-M+ vs. GM-M- -59.7 (-244.3, 124.9) -13.3 (-247.1, 220.5) 

Abbreviation: GM+M+, both grandmothers and mothers smoked during pregnancy; GM+M-, grandmother smoked during pregnancy, 

but not mothers; GM-M+, mothers smoked during pregnancy, but not grandmothers; GM-M-, neither grandmothers nor mothers 

smoked during pregnancy; CI, confidence interval. 

Note that both grand-maternal and maternal smoking during pregnancy are dichotomous variables (Yes/No). 
* Models adjusted for the following variables: F0: grand-maternal pre-pregnancy BMI and socioeconomic status; F1: maternal birth 

weight and BMI at age 18; F2: gender of the child. 
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Supplementary Table 3. The number of CpG sites identified to be associated with F0 grand-maternal BMI and F2 grandchild’s birth 

weight for each screening step 

Models 
Number of CpG sites 

identified 

Step 1 (F0->F1): Using ttScreening package in R to test the association between F0 grand-maternal BMI and F1 DNAm at age 18 

Model 1: F1 DNAm at age 18 = F0 BMI 177 

Model 2: F1 DNAm at age 18 = F0 BMI + cell type 88 

Model 3: F1 DNAm at age 18 = F0 BMI + F0 smoking 180 

Model 4: F1 DNAm at age 18 = F0 BMI + cell type + F0 smoking 87 

# of common CpG sites that were significant in all 4 models 53 

 

Step 2 (F1->F2): Using robust regression to test the association between F1 DNAm at age 18 (using common CpG sites found in 

Step 1) and F2 birth weight a 

Model 1: F2 Birth weight = F1 DNAm at age 18 2 

Model 2: F2 Birth weight = F1 DNAm at age 18 + cell type 2 

Model 3: F2 Birth weight = F1 DNAm at age 18 + covariates 2 

Model 4: F2 Birth weight = F1 DNAm at age 18 + cell type + covariates 3 

# of common CpG sites that were significant in all 4 models 2 

Abbreviation: BMI, body mass index; and DNAm, DNA methylation. 
a In Step 2, the covariates refer to F1 birth weight, F1 BMI at age 18, F1 smoking during pregnancy, F2 child’s gender. 
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Supplementary Table 4. Step 1 screening results using model 4: The full list of 53 CpG sites of differential methylations at age 18 

that are associated with grand-maternal BMI, ordered by FDR-adjusted p-value in the second screening step 

CpG 
CH

R 
Gene name Gene group 

Relation to 

CpG island 
β p-value 

Selection 

proportion 

cg01481989 2 FRZB 1stExon Island -0.0180 0.000017 86 

cg13595777 9 RFK TSS1500 Island -0.0196 0.0000551 77 

cg07283804 11 SERGEF TSS1500 S_Shore 0.0173 0.000126174 71 

cg10683615 7 INMT TSS1500  -0.0162 0.0000149 81 

cg16491305 1 
TRAF5;TRAF5;TR

AF5;T 

5'UTR;5'UTR;5'U

TR;1stE 
 -0.0254 0.0000114 80 

cg26185884 8 ZC3H3 Body N_Shore -0.0364 0.0000857 80 

cg27643859 20 TM9SF4 Body  -0.0235 0.0000413 83 

cg02154252 1 ELTD1 TSS200 Island -0.0149 0.0000903 81 

cg05329976 20 PHACTR3;PHA TSS1500; Body  -0.0153 0.0000126 76 

cg05989795 16 LMF1 TSS1500 S_Shore -0.0203 0.000146895 70 

cg16762300 7 IQCE;IQCE Body;Body  0.0293 0.000150147 73 

cg18163452 1    -0.0286 0.00000855 82 

cg18592365 1 ELTD1 TSS200 Island -0.0133 0.0000652 77 

cg21083793 6 BAT5 Body Island -0.0170 0.000148145 71 

cg11688949 8 STMN4 TSS200  -0.0219 0.00000783 77 

cg08388822 17 
ZSWIM7;ZSWIM7

;TTC19 

Body;Body;TSS15

00 
Island -0.0502 0.0000551 76 

cg13010014 11 ROBO3 Body S_Shore -0.0170 0.0000183 81 

cg21053539 6   N_Shelf -0.0358 0.0000241 84 

cg21614759 6 
ESR1;ESR1;ESR1;

ESR1 

TSS1500;TSS200;

5'UTR;5 
N_Shore -0.0284 0.00000836 79 

cg24432450 4   S_Shore 0.0179 0.0000675 78 

cg26817546 5    -0.0240 0.00000454 89 

cg22028199 11 C11orf30 Body S_Shelf 0.0224 0.000528298 77 

cg23132690 5 FLT4;FLT4 Body;Body  0.0220 0.0000191 82 

cg02922732 6 SLC22A23 3'UTR;3'UTR  0.0226 0.000153785 70 
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cg00231389 16 ABAT;ABAT 5'UTR;TSS200  -0.0215 0.000104913 80 

cg05229598 12 GALNT9 Body S_Shelf 0.0602 0.0000406 86 

cg06623935 1   N_Shore -0.0303 0.0000546 81 

cg13216961 10 AIFM2 5'UTR N_Shelf 0.0140 0.0001877 74 

cg19867410 14    0.0123 0.0000173 81 

cg22014112 6 TNFAIP3 Body S_Shelf -0.0218 0.000137757 73 

cg07899272 2    -0.0168 0.000177036 75 

cg00341602 1 ISG20L2 Body N_Shelf -0.0214 0.00011487 75 

cg15196156 1    -0.0265 0.0000319 84 

cg20041381 1 
C1orf27;C1orf27;

MIR 

TSS1500;TSS1500

;Body;T 
Island -0.0155 0.0000203 78 

cg06567525 20 ISM1 TSS1500 Island -0.0466 0.00044248 70 

cg15403968 6    -0.0255 0.0000116 83 

cg00026909 1 DAB1 5'UTR  -0.0299 0.000368847 71 

cg00990385 12 CCDC42B 1stExon N_Shelf -0.0180 0.0000187 91 

cg09096031 2 RFTN2;RFTN2 1stExon;5'UTR  -0.0214 0.000125805 72 

cg13876113 11 
CREBZF;CREBZF

;CREBZ 

1stExon;Body;Bod

y;Body 
Island -0.0223 0.000035 72 

cg14354327 10   Island 0.0233 0.000212338 73 

cg17324149 3    -0.0162 0.000039 83 

cg18842353 13    -0.0117 0.0000115 80 

cg20000805 1    -0.0198 0.0000687 76 

cg20786730 11    -0.0219 0.00000212 88 

cg26075423 3    -0.0190 0.00000662 83 

cg06899237 6 RGS17 Body  0.0229 0.000044 81 

cg09222115 2 OTOS 5'UTR S_Shelf -0.0191 0.0000209 80 

cg14480035 9    -0.0218 0.0000155 82 

cg16541222 5 EPB41L4A Body  -0.0249 0.0000524 79 

cg21090457 3 ROBO2;ROBO2 Body;Body  -0.0276 0.0000216 73 

cg26834043 5    -0.0304 0.00000538 87 

cg16674433 17 RNF112 TSS200  -0.0177 0.0000493 83 

Abbreviation: BMI, body mass index; and FDR, false discovery rate. 
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Supplementary Table 5. The number of CpG sites identified to be associated with F0 grand-maternal smoking during pregnancy and 

F2 grandchild’s birth weight for each screening step 

Models 
Number of CpG sites 

identified 

Step 1 (F0->F1): Using ttScreening package in R to test the association between F0 grand-maternal smoking and F1 DNAm at age 

18 

Model 1: F1 DNAm at age 18 = F0 smoking 69 

Model 2: F1 DNAm at age 18 = F0 smoking + cell type 64 

Model 3: F1 DNAm at age 18 = F0 smoking + F0 BMI 47 

Model 4: F1 DNAm at age 18 = F0 smoking + cell type + F0 BMI 47 

# of common CpG sites that were significant in all 4 models 17 

 

Step 2 (F1->F2): Using robust regression to test the association between F1 DNAm at age 18 (using common CpG sites found in 

Step 1) and F2 birth weight a 

Model 1: F2 Birth weight = F1 DNAm at age 18 0 

Model 2: F2 Birth weight = F1 DNAm at age 18 + cell type 0 

Model 3: F2 Birth weight = F1 DNAm at age 18 + covariates 0 

Model 4: F2 Birth weight = F1 DNAm at age 18 + cell type + covariates 0 

# of common CpG sites that were significant in all 4 models 0 

Abbreviation: BMI, body mass index; and DNAm, DNA methylation. 
a In Step 2, the covariates refer to F1 birth weight, F1 BMI at age 18, F1 smoking during pregnancy, F2 child’s gender. 

 

 

 

 

 


