Post-traumatic Osteoarthritis in Rabbits Following Traumatic Injury and Surgical Reconstruction of the Knee


Post-traumatic osteoarthritis (PTOA) of the knee is often attributed to anterior cruciate ligament (ACL) and meniscus injury. The development of PTOA, however, does not seem to depend on whether or not the damaged ACL is reconstructed. There has been a need to develop animal models to study the mechanisms of PTOA following reconstruction of a traumatized knee. Eighteen rabbits underwent closed-joint trauma to produce ACL rupture and meniscus damage. Then, for the first time, the traumatized knee was surgically repaired in this animal model. Upon euthanasia at 1-, 3- or 6-month post-trauma, joint stability, cartilage morphology and mechanical properties, as well as histology of the cartilage and subchondral bone were evaluated. Trauma-induced knee injury involved 72% mid-substance ACL rupture, 28% partial ACL tear and 56% concurrent medial meniscal damage. ACL reconstruction effectively restored joint stability by reducing joint laxity to a level similar to that in the contralateral intact knee. Compared to their contralateral controls, reconstructed limbs showed osteoarthritic changes to the cartilage and subchondral bone as early as 1-month post-trauma. The degeneration progressed over time up to 6-month. Overall, the medial compartments had more tissue damage than their corresponding lateral counterparts. Damage patterns to the ACL, the frequency of observed concurrent meniscal injury, and reductions in cartilage integrity and health were consistent with clinical observations of human patients who undergo ACL injury and reconstruction. Thus, we believe the combined closed-joint injury and surgical repair lapine model of PTOA, being first-ever and clinically relevant, shows promise to evaluate well-targeted therapeutics and other interventions for this chronic disease.

Publication Title

Annals of Biomedical Engineering