Structural and functional organization of the lower jaw barrel subfield in rat primary somatosensory cortex


Barrel subfields in rodent primary somatosensory cortex (SI) are important model systems for studying cortical organization and reorganization. During cortical reorganization that follows limb deafferentation, neurons in deafferented forelimb SI become responsive to previously unexpressed inputs from the lower jaw. Although the lower jaw barrel subfield (LJBSF) is a likely source of the input, this subfield has received little attention. Our aim was to describe the structural and functional organization of the normal LJBSF. To investigate LJBSF organization, a nomenclature for lower jaw skin surface was developed, cytochrome oxidase (CO) was used to label flattened-cut LJBSF sections, microelectrodes were used to map the lower jaw skin surface representation in SI, and electrolytic lesions, recovered from electrode penetrations, were used to align the physiological map to the underlying barrel map. LJBSF is a tear-shaped subfield containing approximately 24 barrels, arranged in eight mediolateral rows and a barrel-free zone capping the anterior border. The representation of the lower jaw skin consisting of chin vibrissae and microvibrissae embedded in common fur is somatotopically organized in a single map in the contralateral SI. This physiological map shows that the activity from the vibrissae aligns with the CO-staining of the underlying LJBSF. LJBSF barrels receive topographically ordered barrel-specific input from individual vibrissa and microvibrissae in the lower jaw but not from trident whiskers. The barrel-free zone receives topographically ordered input from the lower lip. These data demonstrating that the LJBSF is a highly organized subfield are essential for understanding its possible role in cortical reorganization.

Publication Title

Journal of Comparative Neurology