Title

Competitive heavy metal adsorption onto new and aged polyethylene under various drinking water conditions

Abstract

The study goal was to identify factors that influence copper (Cu), iron (Fe), lead (Pb), manganese (Mn), and zinc (Zn) loading on new and aged low-density polyethylene (LDPE) under various drinking water conditions. The applied aging procedure increased LDPE surface area, hydrophilicity and the number of oxygen containing functional groups. Aged LDPE adsorbed up to a 5 fold greater metals than the new LDPE: Cu > Pb, Zn > Mn. Water pH (5.5 to 10.5) significantly altered LDPE surface metal loading. The organic carbon leached from plastic pipes inhibited Cu adsorption (−43.8%), but other metals were less impacted (−5.7% to −9.1%). The addition of free chlorine and corrosion inhibitor retarded metal adsorption to suspended LDPE materials. Overall, by changing water conditions total metal loadings (i.e., Cu, Mn, Pb and Zn) were altered 20.1 to 35.4%. When Fe was present, Cu (−4.0%) and Pb (−4.5%) loadings were reduced, while lesser impacts were found for Mn and Zn. Cu2+, Pb2+ and Zn2+ hydroxides and oxides were identified as the major metal deposit forms on the LDPE surface by XPS. To better predict metal fate in plastic piping systems, plastic surface characteristics, dissolved organics, water pH, hydraulic conditions and microbial growth should be considered.

Publication Title

Journal of Hazardous Materials

Share

COinS