Agreement between the Heidelberg Retina Tomograph (HRT) stereometric parameters estimated using HRT-I and HRT-II


Purpose. To assess agreement between Heidelberg Retina Tomograph (HRT)-I and HRT-II stereometric parameters and to determine whether parabolic error correction (PEC) to the topographies improves agreement. Methods. University of California San Diego Diagnostic Innovations in Glaucoma Study participants with two HRT-II examinations (n = 380) or one HRT-I and one HRT-II examinations (n = 344) acquired on the same day were included. From the group of 380 eyes, 200 eyes were randomly selected to estimate the repeatability coefficients of HRT-II rim area and volume, cup area and volume, and mean retinal nerve fiber layer (RNFL) thickness parameters (HRT-II control group), and the remaining 180 eyes were used to assess agreement between two HRT-II examinations (HRT-II study group). Agreement between stereometric parameters of HRT-I and HRT-II examinations (HRT-I vs. HRT-II study group) were assessed with (1) no PEC, (2) HRT PEC, and (3) a modified PEC. Bland-Altman plots were used to assess agreement using estimates of bias and clinical limits of agreement (CLA) based on repeatability coefficients. Results. In the HRT-II study group, agreement between stereometric parameters was good, with no statistically significant biases. For all parameters, differences were within the CLA in 94% of participants. In the HRT-I vs. HRT-II study group, there was a small statistically significant bias between the stereometric parameters, but all differences were within CLA for ≥95% of participants. In both study groups, PEC did not improve agreement. Conclusions. Agreement between HRT-I and HRT-II stereometric parameters was good, and PEC did not improve agreement. These results suggest that HRT-I and HRT-II examinations can be used interchangeably to detect changes in stereometric parameters over time. Copyright © 2011 American Academy of Optometry.

Publication Title

Optometry and Vision Science