Fatigue of additive manufactured Ti-6Al-4V, Part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects


Additive manufacturing provides an appealing means to process titanium alloy parts with new levels of conformability, complexity, and weight reduction. However, due to the heating/cooling rates and heat transfer associated with directed energy source material processing, the as-built AM parts contain unique material and microstructural features. In order to confidently manufacture fatigue critical additive manufactured (AM) Ti-6Al-4V parts, a better understanding of the interrelationships between powder feedstock, AM processes, structure of the processed parts, their resulting mechanical properties, and their performance under realistic loadings is necessary. Part I of this two-part collection focuses on the powder-process-structure relationships and how powder feedstock, manufacturing, and post-processing conditions can affect the microstructure and defect features that ultimately contribute to the fatigue performance of Ti-6Al-4V parts. The material and physical phenomena inherent to the AM process of Ti-6Al-4V are discussed in detail and related to the phase composition/structure, grain morphology, surface characteristics, defect size/distribution, and post-process treatments available for AM parts. This investigation is the foundation for the structure-performance relationships that will be discussed in detail in Part II.

Publication Title

International Journal of Fatigue