Title

Composition and emissions of VOCs in main- and side-stream smoke of research cigarettes

Abstract

It is well known that mainstream (MS) and sidestream (SS) cigarette smoke contains a vast number of chemical substances. Previous studies have emphasized SS smoke rather than MS smoke to which smokers are exposed, and most have used chamber tests that have several disadvantages such as wall losses. Emissions from standard research cigarettes have been measured, but relatively few constituents have been reported, and only the 1R4F (low nicotine) cigarette type has been tested. This study provides a comprehensive characterization of total, MS and SS smoke emissions for the 1R5F (ultra low nicotine), 2R4F (low nicotine), and 1R3F (standard nicotine) research cigarettes research cigarettes, including emission factors for a number of toxic compounds (e.g., benzene) and tobacco smoke tracers (e.g., 2,5-dimethyl furan). Emissions of volatile organic compounds (VOCs) and particulate matter (PM) are quantified using a dynamic dilution emission measurement system that is shown to produce accurate, rapid and reproducible results for over 30 VOCs and PM. SS and MS emissions were accurately apportioned based on a mass balance of total emissions. As expected, SS emissions greatly exceeded MS emissions. The ultra low nicotine cigarette had lower emissions of most VOCs compared to low and standard nicotine cigarettes, which had similar emissions. Across the three types of cigarettes, emissions of benzene (296-535 μg cig-1), toluene (541-1003 μg cig-1), styrene (90-162 μg cig-1), 2-dimethyl furan (71-244 μg cig-1), naphthalene (15-18 μg cig-1) and other VOCs were generally comparable to or somewhat higher than literature estimates using chamber tests. © 2007 Elsevier Ltd. All rights reserved.

Publication Title

Atmospheric Environment

Share

COinS