Oral contraceptives modify the effect of GATA3 polymorphisms on the risk of asthma at the age of 18 years via DNA methylation

Abstract

Background: The prevalence of asthma in girls increases after puberty. Previous studies have detected associations between sex hormones and asthma, as well as between sex hormones and T helper 2 (Th2) asthma-typical immune responses. Therefore, we hypothesized that exogenous or endogenous sex hormone exposure (represented by oral contraceptive pill (OCP) use and early menarche, respectively) are associated with DNA methylation (DNA-M) of the Th2 transcription factor gene, GATA3, in turn affecting the risk of asthma in girls, possibly in interaction with genetic variants. Blood samples were collected from 245 female participants aged 18 years randomly selected for methylation analysis from the Isle of Wight birth cohort, UK. Information on use of OCPs, age at menarche, and concurrent asthma were assessed by questionnaire. Genome-wide DNA-M was determined using the Illumina Infinium HumanMethylation450 beadchip. In a first stage, we tested the interaction between sex hormone exposure and genetic variants on DNA-M of specific cytosine-phosphate-guanine (CpG) sites. In a second stage, we determined whether these CpG sites interact with genetic variants in GATA3 to explain the risk of asthma. Results: Interactions between OCP use and seven single nucleotide polymorphisms (SNPs) of GATA3 were analyzed for 14 CpG sites (stage 1). The interaction between OCP use and SNP rs1269486 was found to be associated with the methylation level of cg17124583 (P = 0.002, false discovery rate (FDR) adjusted P = 0.04). DNA-M of this same CpG site was also influenced by the interaction between age at menarche and rs1269486 (P = 0.0017). In stage 2, we found that cg17124583 modified the association of SNP rs422628 with asthma risk at the age of 18 years (P = 0.006, FDR adjusted P = 0.04). Subjects with genotype AG showed an increase in average risk ratio (RR) from 0.31 (95% CI: 0.10 to 0.8) to 11.65 (95% CI: 1.71 to 79.5) when methylation level increased from 0.02 to 0.12, relative to genotype AA. Conclusion: A two-stage model consisting of genetic variants in the GATA3 gene, OCP use, age at menarche, and DNA-M may explain how sex hormones in women can increase the asthma prevalence after puberty.

Publication Title

Clinical Epigenetics

Share

COinS