Title

Dye-loaded porous nanocapsules immobilized in a permeable polyvinyl alcohol matrix: A versatile optical sensor platform

Abstract

In this work we report on a versatile sensor platform based on encapsulated indicator dyes. Dyes are entrapped in hollow nanocapsules with nanometer-thin walls of controlled porosity. The porous nanocapsules retain molecules larger than the pore size but provide ultrafast access to their interior for molecules and ions smaller than the pore size. Dye-loaded nanocapsules are immobilized in a polyvinyl alcohol (PVA) matrix with high solvent permeability and rapid analyte diffusion. This approach provides robust sensing films with fast response and extended lifetime. To demonstrate the performance characteristics of such films, pH-sensitive indicator dyes were entrapped in vesicle-templated nanocapsules prepared by copolymerization of tert-butyl methacrylate, butyl methacrylate, and ethylene glycol dimethacrylate. As pH sensitive dyes, Nile blue A, bromophenol blue, and acid fuchsin were tested. Time-resolved absorbance measurements showed that the rate of the color change is controlled by the rate of diffusion of protons in the hydrogel. The pH-induced color change in a ∼400 μm thick film is complete within 40 and 60 s. The porous nanocapsule loaded films showed excellent stability and reproducibility in long-term monitoring experiments. Compartmentalization of the indicator dyes within the nanocapsules increased their stability. The matrix caused a shift in the position of the color change of the dye compared to that in an aqueous buffer solution. The encapsulation/immobilization protocol described in this account is expected to be broadly applicable to a variety of indicator dyes in optical sensor applications. © 2012 American Chemical Society.

Publication Title

Analytical Chemistry

Share

COinS