Ruminal Bacterial Community Successions in Response to Monensin Supplementation in Goats


Previous studies have demonstrated that the effects of monensin on methanogenesis and ruminal fermentation in ruminants were time-dependent. To elucidate the underlying mechanism, we investigated the ruminal bacterial community successions during the adaptation to monensin supplementation and subsequent withdrawal in goats. The experiment included a baseline period of 20 days followed by a treatment period of 55 days with 32 mg monensin/d and a washout period of 15 days. Monensin supplementation reduced the α diversity and changed the structure of ruminal microflora. The α diversity was gradually restored during adaption, but the structure was still reshaped. The temporal dynamics of 261 treatment- and/or time-associated ruminal bacteria displayed six patterns, with two as monensin-sensitive and four as monensin-resistant. The monensin sensitivity and resistance of microbes do not follow a clear dichotomy between Gram-positive and Gram-negative cell types. Moreover, the temporal dynamic patterns of different bacterial species within the same genus or family also displayed variation. Of note, the relative abundance of the total ruminal cellulolytic bacteria gradually increased following monensin treatment, and that of the total amylolytic bacteria were increased by monensin, independent of the duration. In conclusion, under the pressure of monensin, the ruminal ecosystem was reshaped through a series of succession processes, and the carbohydrate-degrading bacteria presented a higher level of adaptability.

Publication Title