Title

Spectroscopic method for the determination of the ionic site concentration in solvent polymeric membranes and membrane plasticizers

Abstract

The built-in site density of either fixed sites or mobile hydrophobic ion sites determines whether a membrane is permselective for cations or anions of the sample. The molar ratio of the ionophore to the intrinsic or added ionic sites in an ion-selective membrane significantly influences the potentiometric response of ionophore-based electrodes. Consequently, full knowledge of the "site inventory" in an ion-selective membrane may be essential when new, uncharacterized polymers or plasticizers are implemented for ion-selective electrode fabrication. A simple-spectroscopic method was developed for the fast and accurate determination of the ionic site concentration (covalently attached functionalized groups or impurities) in plasticized polymeric membranes and membrane plasticizers. The method is based on the determination of the degree of protonation of hydrogen ion-selective chromoionophores incorporated into these membranes or dissolved in the membrane plasticizers. In electroneutral membranes, the concentration of the positively charged, protonated ionophore and the total concentration of negative sites are equal. The method was applied for the determination of ionic sites (both positively and negatively charged) in PVC materials (different purity grade, and bearing various functional groups), polyurethanes (aliphatic, aromatic, and polycarbonate-based), and selected Fluka plasticizers (2-nitrophenyl octyl ether and 2-ethyl-hexyl sebacate). The technique proved to be appropriate for fast quantification of ionic impurities in hydrophobic, optically transparent materials.

Publication Title

Analytical Chemistry

Share

COinS