Computability with low-dimensional dynamical systems
Abstract
It has been known for a short time that a class of recurrent neural networks has universal computational abilities. These networks can be viewed as iterated piecewise-linear maps in a high-dimensional space. In this paper, we show that similar systems in dimension two are also capable of universal computations. On the contrary, it is necessary to resort to more complex systems (e.g., iterated piecewise-monotone maps) in order to retain this capability in dimension one. © 1994.
Publication Title
Theoretical Computer Science
Recommended Citation
Koiran, P., Cosnard, M., & Garzon, M. (1994). Computability with low-dimensional dynamical systems. Theoretical Computer Science, 132 (2022-01-02), 113-128. https://doi.org/10.1016/0304-3975(94)90229-1