Dynamics of prefix usage at an edge router


We investigate prefix activity on peering links between a regional Internet aggregation point and two tier-1 ISPs by analyzing a 24 hour packet trace from our regional ISP. Our data shows that a small number of prefixes carry the bulk of the packets, which corroborates previous work. However, unlike previous work, which focused on traffic from backbone routers, we look at edge traffic. In addition, we look at prefix activity at fine timescales, in the order of minutes, instead of just the aggregate view, which allows us to better understand the dynamics of prefix behavior. We define two metrics to capture the dynamic behavior of prefixes: the duty cycle captures a prefix's activity, while the mean rank difference captures how busy a prefix is. This allows us to estimate not only how much traffic a prefix carries, but also how that traffic is distributed throughout the day. We expect that our work will inform new route caching strategies (to alleviate the strain from an ever expanding global routing table) and evaluation of the performance of new routing architectures such as virtual aggregation and map-n-encap. © 2011 Springer-Verlag.

Publication Title

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)