Experimental Study on Low Power Wide Area Networks (LPWAN) for Mobile Internet of Things


In the past decade, we have witnessed explosive growth in the number of low-power embedded and Internet-connected devices, reinforcing the new paradigm, Internet of Things (IoT). The low power wide area network (LPWAN), due to its long-range, low-power and low-cost communication capability, is actively considered by academia and industry as the future wireless communication standard for IoT. However, despite the increasing popularity of 'mobile IoT', little is known about the suitability of LPWAN for those mobile IoT applications in which nodes have varying degrees of mobility. To fill this knowledge gap, in this paper, we conduct an experimental study to evaluate, analyze, and characterize LPWAN in both indoor and outdoor mobile environments. Our experimental results indicate that the performance of LPWAN is surprisingly susceptible to mobility, even to minor human mobility, and the effect of mobility significantly escalates as the distance to the gateway increases. These results call for development of new mobility-aware LPWAN protocols to support mobile IoT.

Publication Title

IEEE Vehicular Technology Conference