Complete protection against aflatoxin B1-induced liver cancer with a triterpenoid: DNA adduct dosimetry, molecular signature, and genotoxicity threshold


In experimental animals and humans, aflatoxin B1 (AFB 1) is a potent hepatic toxin and carcinogen. The synthetic oleanane triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), a powerful activator of Keap1-Nrf2 signaling, protects against AFB1-induced toxicity and preneoplastic lesion formation (GST-P-positive foci). This study assessed and mechanistically characterized the chemoprotective efficacy of CDDO-Imagainst AFB1-induced hepatocellular carcinoma (HCC). A lifetime cancer bioassay was undertaken in F344 rats dosed with AFB1 (200 μg/kg rat/day) for four weeks and receiving either vehicle or CDDO-Im(three times weekly), oneweek before and throughout the exposure period. Weekly, 24-hour urine samples were collected for analysis of AFB1 metabolites. In a subset of rats, livers were analyzed for GST-P foci. The comparative response of a toxicogenomic RNA expression signature for AFB1 was examined. CDDO-Im completely protected (0/20) against AFB1-induced liver cancer compared with a 96% incidence (22/23) observed in the AFB1 group. With CDDO-Im treatment, integrated level of urinary AFB1-N7-guanine was significantly reduced (66%) and aflatoxin-N-acetylcysteine, a detoxication product, was consistently elevated (300%) after the first AFB1 dose. In AFB1-treated rats, the hepatic burden of GST-P-positive foci increased substantially (0%-13.8%) over the four weeks, but was largely absent with CDDO-Im intervention. The toxicogenomic RNA expression signature characteristic of AFB1 was absent in the AFB1 + CDDO-Im-treated rats. The remarkable efficacy of CDDO-Imas an anticarcinogen is established even in the face of a significant aflatoxin adduct burden. Consequently, the absence of cancer requires a concept of a threshold for DNA damage for cancer development. ©2014 AACR.

Publication Title

Cancer Prevention Research