Ouachita, Appalachian, and Ancestral Rockies deformations recorded in mesoscale structures on the foreland Ozark plateaus


Mesoscale structures in Paleozoic rocks of the Ozark plateaus reveal four Pennsylvanian deformation episodes in midcontinent North America. The two earliest episodes can be assigned to progressive northwestward docking of the Ouachita terrane with North America. Early extensional structures (Event 1) indicate a northwest/southeast maximum horizontal stress (Hmax) during Early Pennsylvanian Ouachita terrane advance. Event 2 extensional and strike-slip structures indicate Hmax across the Ozark plateaus that varies systematically from north-northwest/south-southeast in the south to northeast/southwest in the north. This suggests development of a slip-line deformation field in response to minor northeastward lateral escape of lithospheric blocks away from the northwestward-moving Ouachita terrane's leading edge, which acted as an indenter in western Arkansas, southeastern Oklahoma, and Texas. Younger contractional and strike-slip structures of Event 3 indicate northeast/southwest Hmax across the entire Ozark plateaus, and deformation orientation and intensity are not readily assigned to Ouachita foreland deformation and may be related to Middle Pennsylvanian Ancestral Rockies contractional deformation. Finally, Event 4 contractional structures indicate northwest/southeast Hmax consistent with southern Appalachian late stage convergence. Deformation episodes are localized along basement fault zones, particularly at major bends, suggesting minor restraining-bend uplifts along strike-slip faults. Geometries of conjugate normal fault and hybrid shear joint arrays indicate localized areas of high differential stress consistent with basement block uplift at these bends. High-angle faults reactivated in a reverse sense and bedding-parallel veins suggest tensile minimum stresses and pore fluid pressures exceeding lithostatic stress, consistent with brine pulses driven into the midcontinent during Late Paleozoic orogeny (as proposed by other authors). © 2009 Elsevier B.V. All rights reserved.

Publication Title