Geochemistry of Contrasting Stream Types, Taylor Valley, Antarctica

Abstract

The McMurdo Dry Valley region is the largest ice-free area of Antarctica. Ephemeral streams flow here during the austral summer, transporting glacial meltwater to perennially ice-covered, closed basin lakes. The chemistry of 24 Taylor Valley streams was examined over the two-decade period of monitoring from 1993 to 2014, and the geochemical behavior of two streams of contrasting physical and biological character was monitored across the seven weeks of the 2010–2011 flow season. Four species dominate stream solute budgets: HCO3 –, Ca2+, Na+, and Cl–, with SO4 2–, Mg2+, and K+ present in significantly lesser proportions. All streams contain dissolved silica at low concentrations. Across Taylor Valley, streams are characterized by their consistent anionic geochemical fingerprint of HCO3 > Cl > SO4, but there is a split in cation composition between 14 streams with Ca > Na > Mg > K and 10 streams with Na > Ca > Mg > K. Andersen Creek is a first-order proglacial stream representative of the 13 short streams that flow <1.5 km from source to gage. Von Guerard is representative of 11 long streams 2–7 km in length characterized by extensive hyporheic zones. Both streams exhibit a strong daily cycle for solute load, temperature, dissolved oxygen, and pH, which vary in proportion to discharge. A well-expressed diurnal co-variation of pH with dissolved oxygen is observed for both streams that reflects different types of biological control. The relative consistency of Von Guerard composition over the summer flow season reflects chemostatic regulation, where water in transient storage introduced during times of high streamflow has an extended opportunity for water-sediment interaction, silicate mineral dissolution, and pore-water exchange.

Publication Title

Bulletin of the Geological Society of America

Share

COinS