Stress analysis of non-uniform thickness piping system with general piping analysis software


Most general piping analysis software can only perform ASME design stage type code compliance analysis with uniform pipe wall thickness. However, non-uniform wall thickness, commonly on elbows or bends, can be found in many industrial applications. A typical example is thinned non-uniform thickness at bends or elbows caused by flow accelerated corrosion (FAC). In this paper, an analysis procedure is introduced to enable a general piping software to conduct ASME III class 1 piping analysis with non-uniform wall thickness. The demonstration is performed on CANDU (Canadian Deuterium Uranium) feeder pipes, which have been subjected to FAC caused wall thinning. The results are compared with both conventional uniform thickness piping analysis and non-uniform thickness solid finite element analysis. The comparison shows the validity of the proposed "average-minimum-average" approach by employing the general piping analysis software. The approach remains conservative compared to the benchmark solid finite element analysis results. Meanwhile it provides lower acceptable thickness than the conventional piping analysis. © 2010 Elsevier B.V. All rights reserved.

Publication Title

Nuclear Engineering and Design