Title

Trigonometric Caputo Fractional Approximation of Stochastic Processes

Abstract

Here we encounter and study very general stochastic positive linear operators induced by general positive linear operators that are acting on continuous functions in the trigonometric sense. These are acting on the space of real fractionally differentiable stochastic processes. Under some very mild, general and natural assumptions on the stochastic processes we produce related trigonometric fractional stochastic Shisha-Mond type inequalities of Lq-type (Formula Presented) and corresponding trigonometric fractional stochastic Korovkin type theorems. These are regarding the trigonometric stochastic q-mean fractional convergence of a sequence of stochastic positive linear operators to the stochastic unit operator for various cases. All convergences are produced with rates and are given via the trigonometric fractional stochastic inequalities involving the stochastic modulus of continuity of the αth fractional derivatives of the engaged stochastic process, (Formula Presented). The impressive fact is that only two basic real Korovkin test functions assumptions, one of them trigonometric, are enough for the conclusions of our trigonometric fractional stochastic Korovkin theory. We give applications to stochastic Bernstein operators in the trigonometric sense. See also [11].

Publication Title

Studies in Systems, Decision and Control

Share

COinS