Dissipative particle dynamics of self-assembled multi-component lipid membranes


Self-assembled multicomponent lipid vesicles are studied via large scale dissipative particle dynamics simulations. We investigated the effect of volume fraction, line tension, surface tension, and transbilayer asymmetry in the lipid distribution on the dynamics and morphology of the membrane. We found that in the of symmetric transbilayer lipid distribution, the dynamics is rich characterized by coalescence of flat patches, budding and coalescence of caps. However, an asymmetric transbilayer lipid distribution sets a spontaneous curvature and lead to dramatically slow dynamics at intermediate values of the surface tension.

Publication Title

Springer Proceedings in Physics