Lipid flip-flop driven mechanical and morphological changes in model membranes


We study, using dissipative particle dynamics simulations, the effect of active lipid flip-flop on model fluid bilayer membranes. We consider both cases of symmetric as well as asymmetric flip-flops. Symmetric flip-flop leads to a steady state of the membrane with an effective temperature higher than that of the equilibrium membrane and an effective surface tension lower than that of the equilibrium membrane. Asymmetric flip-flop leads to transient conformational changes in the membrane in the form of bud or blister formation, depending on the flip rate. © 2008 American Institute of Physics.

Publication Title

Journal of Chemical Physics