The effect of high dose on residual radicals in open air irradiated α-T UHMWPE resin powder


Powder samples of UHMWPE (GUR 1020) containing 0.1wt%. vitamin E (α-tocopherol, α-T) were irradiated at room temperature in air for doses of 30-kGy, 65-kGy or 100-kGy (60Co). After irradiation, they were stored at -78.5°C (dry ice temperature) for 1 year and then opened to air at room temperature. Following the decay of the primary alkyl and allyl radicals (at room temperature in air), growth of the carbon-centered polyenyl R1 (-CH-[-CH=CH-]m-, m≥3), and the oxygen-centered di- or tri-enyl c(-OCH-[-CH=CH-]m-, m≤3) residual radicals were measured for 8 weeks. An X-band electron spin resonance (ESR) spectrometer was used for radical measurements. The initial relative radical concentrations (R2/R1) were found to be 10.13, 4.6 and 3.7 for the 65-kGy, 30-kGy and 100-kGy samples, respectively. R1 and R2 were both found to grow significantly in the 65-kGy sample while they grew only slightly in the 30-kGy and 100-kGy samples. In 65-kGy sample, R1 grew faster than R2 and the relative concentration R2/R1 was reduced from 10.13 to 2.9 for the 65-kGy sample while those for the 30-kGy and 100-kGy samples reduced only slightly, from 4.6 to 3.5 and 3.7 to 3.2, respectively. The behavior of the residual radicals can be explained by Raman spectroscopic data which suggest that the 65-kGy samples had a higher percentage of amorphous regions when compared to the 30-kGy or 100-kGy ones (21.7 compared to 15.7 or 17.9) and also suggest a lower percentage of interfacial regions (16.4 compared to 25.6 or 17.5) and a lower level of structural disorder (0.26 compared to 0.44 or 0.27). © 2012 Elsevier Ltd.

Publication Title

Radiation Physics and Chemistry