MEKK4 stimulation of p38 and JNK activity is negatively regulated by GSK3β

Abstract

The MAPK kinase kinase MEKK4 is required for neurulation and skeletal patterning during mouse development. MEKK4 phosphorylates and activates MKK4/MKK7 and MKK3/MKK6 leading to the activation of JNK and p38, respectively. MEKK4 is believed to be auto-inhibited, and its interaction with other proteins controls its dimerization and activation. TRAF4, GADD45, and Axin each bind and activate MEKK4, with TRAF4 and Axin binding to the kinase domain and GADD45 binding within the N-terminal regulatory domain. Here we show that similar to the interaction with TRAF4 and Axin, the kinase domain of MEKK4 interacts with the multifunctional serine/threonine kinase GSK3β. GSK3β binding to MEKK4 blocks MEKK4 dimerization that is required for MEKK4 activation, effectively inhibiting MEKK4 stimulation of the JNK and p38 MAPK pathways. Inhibition of GSK3β kinase activity with SB216763 results in enhanced MEKK4 kinase activity and increased JNK and p38 activation, indicating that an active state of GSK3β is required for binding and inhibition of MEKK4 dimerization. Furthermore, GSK3β phosphorylates specific serines and threonines in the N terminus of MEKK4. Together, these findings demonstrate that GSK3β binds to the kinase domain of MEKK4 and regulates MEKK4 dimerization. However, unlike TRAF4, Axin, and GADD45, GSK3β inhibits MEKK4 activity and prevents its activation of JNK and p38. Thus, control of MEKK4 dimerization is regulated both positively and negatively by its interaction with specific proteins. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Publication Title

Journal of Biological Chemistry

Share

COinS