Estimating the Effect of Social Distancing Interventions on COVID-19 in the United States


Since its global emergence in 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused multiple epidemics in the United States. When medical treatments for the virus were still emerging and a vaccine was not yet available, state and local governments sought to limit its spread by enacting various social-distancing interventions, such as school closures and lockdowns; however, the effectiveness of these interventions was unknown. We applied an established, semimechanistic Bayesian hierarchical model of these interventions to the spread of SARS-CoV-2 from Europe to the United States, using case fatalities from February 29, 2020, up to April 25, 2020, when some states began reversing their interventions. We estimated the effects of interventions across all states, contrasted the estimated reproduction numbers before and after lockdown for each state, and contrasted the predicted number of future fatalities with the actual number of fatalities as a check of the model's validity. Overall, school closures and lockdowns were the only interventions modeled that had a reliable impact on the time-varying reproduction number, and lockdown appears to have played a key role in reducing that number to below 1.0. We conclude that reversal of lockdown without implementation of additional, equally effective interventions will enable continued, sustained transmission of SARS-CoV-2 in the United States.

Publication Title

American journal of epidemiology