Title

Online learning persistence and academic achievement

Abstract

Student persistence in online learning environments has typically been studied at the macro-level (e.g., completion of an online course, number of academic terms completed, etc.). The current examines student persistence in an adaptive learning environment, ALEKS (Assessment and LEarning in Knowledge Spaces). Specifically, the study explores the relationship between students' academic achievement and their persistence during learning. By using archived data that included their math learning log data and performance on two standardized tests, we first explored student learning behavior patterns with regard to their persistence during learning. Clustering analysis identified three distinctive patterns of persistence-related learning behaviors: (1) High persistence and rare topic shifting; (2) Low persistence and frequent topic shifting; and (3) Moderate persistence and moderate topic shifting. We further explored the association between persistence and academic achievement. No significant differences were observed between academic achievement and the different learning patterns. We interpret this result in addition to a preliminary exploration of topic mastery trends, to suggest that "wheel-spinning" behaviors coexist with persistence, and is ultimately not beneficial to learning.

Publication Title

Proceedings of the 10th International Conference on Educational Data Mining, EDM 2017

This document is currently not available here.

Share

COinS