Revisiting the question of nucleated versus enucleated erythrocytes in birds and mammals


Erythrocyte enucleation is thought to have evolved in mammals to support their energetic cost of high metabolic activities. However, birds face similar selection pressure yet possess nucleated erythrocytes. Current hypotheses on the mammalian erythrocyte enucleation claim that the absence of cell organelles allows erythrocytes to 1) pack more hemoglobin into the cells to increase oxygen carrying capacity and 2) decrease erythrocyte size for increased surface area-to-volume ratio, and improved ability to traverse small capillaries. In this article, we first empirically tested current hypotheses using both conventional and phylogenetically informed analysis comparing literature values of mean cell hemoglobin concentration (MCHC) and mean cell volume (MCV) between 181 avian and 194 mammalian species. We found no difference in MCHC levels between birds and mammals using both conventional and phylogenetically corrected analysis. MCV was higher in birds than mammals according to conventional analysis, but the difference was lost when we controlled for phylogeny. These results suggested that avian and mammalian erythrocytes may employ different strategies to solve a common problem. To further investigate existing hypotheses or develop new hypothesis, we need to understand the functions of various organelles in avian erythrocytes. Consequently, we covered potential physiological functions of various cell organelles in avian erythrocytes based on current knowledge, while making explicit comparisons with their mammalian counterparts. Finally, we proposed by taking an integrative and comparative approach, using tools from molecular biology to evolutionary biology, would allow us to better understand the fundamental physiological functions of various components of avian and mammalian erythrocytes.

Publication Title

American Journal of Physiology - Regulatory Integrative and Comparative Physiology