Anaerobic exercise and oxidative stress: A review


Oxidative stress and subsequent damage to cellular proteins, lipids, and nucleic acids, as well as changes to the glutathione system, are well documented in response to aerobic exercise. However, far less information is available on anaerobic exercise-induced oxidative modifications. Recent evidence indicates that high intensity anaerobic work does result in oxidative modification to the above-mentioned macromolecules in both skeletal muscle and blood. Also, it appears that chronic anaerobic exercise training can induce adaptations that act to attenuate the exercise-induced oxidative stress. These may be specific to increased antioxidant defenses and/or may act to reduce the generation of pro-oxidants during and after exercise. However, a wide variety of exercise protocols and assay procedures have been used to study oxidative stress pertaining to anaerobic work. Therefore, precise conclusions about the exact extent and location of oxidative macromolecule damage, in addition to the adaptations resulting from chronic anaerobic exercise training, are difficult to indicate. This manuscript provides a review of anaerobic exercise and oxidative stress, presenting both the acute effects of a single exercise bout and the potential for adaptations resulting from chronic anaerobic training. © 2004 Canadian Society for Exercise Physiology.

Publication Title

Canadian Journal of Applied Physiology