Electronic Theses and Dissertations
Identifier
1225
Date
2014
Document Type
Thesis
Degree Name
Master of Science
Major
Electrical and Computer Engr
Concentration
Computer Engineering
Committee Chair
Russell Deaton
Committee Member
Eddie Jacobs
Committee Member
Aaron Robinson
Abstract
Advances in nanotechnology are leading to promising possibilities in the field of cancer diagnostics and treatment. One proposed method is to coat metastasized cancer cells with a metamaterial constructed from gold nanospheres. Then a photothermal reaction may be induced to destroy the cancer cells by exploiting the fact that gold nanoparticles have a strong localized surface plasmon resonance at infrared wavelengths of light. This metamaterial could be manufactured through self-assembly by using DNA to bind the gold nanospheres together into an array. A material constructed in this manner would have flaws that are inherent in any self-assembly process and a vacancy threshold that still allows for a strong optical response must be determined. The effects of flaws on the optical properties of such a material are addressed in this thesis by modeling the material flaws as randomly generated vacancies in a 5 x 5 array of gold nanoparticles. COMSOL is then used to simulate the optical response from 400 nm - 700 nm in wavelength. The results show that the maximum extinction efficiency response of the array occurs at 510 nm and is tolerant up to a vacancy error rate of 50%. When this threshold is maintained the array's peak response for current density will be red-shifted 30 nm ahead and 10 nm ahead for total power dissipation. Showing that extinction efficiency can reliably be used to predict the response of both current density and total power dissipation for an array of gold nanospheres, while allowing for a large amount of vacancy errors.
Library Comment
Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.
Recommended Citation
Fathi, Jason Ceavash, "The Effect of Vacancies on Plasmonic Response in Arrays of Gold Nanoparticles" (2014). Electronic Theses and Dissertations. 1030.
https://digitalcommons.memphis.edu/etd/1030
Comments
Data is provided by the student.