Electronic Theses and Dissertations
Identifier
1385
Date
2015
Document Type
Dissertation
Degree Name
Doctor of Philosophy
Major
Biomedical Engineering
Committee Chair
Amy Curry
Committee Member
Morshed Bashir
Committee Member
Eddie Jacobs
Abstract
The primary goal of this project is to develop a wireless system for simultaneous recording-and-stimulation (SRD) to deliver low amplitude current pulses to the primary somatosensory cortex (SI) of rats to activate and enhance an interhemispheric cortical pathway. Despite the existence of an interhemispheric connection between similar forelimb representations of SI cortices, forelimb cortical neurons respond only to input from the contralateral (opposite side) forelimb and not to input from the ipsilateral (same side) forelimb. Given the existence of this interhemispheric pathway we have been able to strengthen/enhance the pathway through chronic intracortical microstimulation (ICMS) in previous acute experiments of anesthetized rats. In these acute experiments strengthening the interhemispheric pathway also brings about functional reorganization whereby cortical neurons in forelimb cortex respond to new input from the ipsilateral forelimb. Having the ability to modify cortical circuitry will have important applications in stroke patients and could serve to rescue and/or enhance responsiveness in surviving cells around the stroke region. Also, the ability to induce functional reorganization within the deafferented cortical map, which follows limb amputation, will also provide a vehicle for modulating maladaptive cortical reorganization often associated with phantom limb pain leading to reduced pain. In order to increase our understanding of the observed functional reorganization and enhanced pathway, we need to be able to test these observations in awake and behaving animals and eventually study how these changes persist over a prolonged period of time. To accomplish this a system was needed to allow simultaneous recording and stimulation in awake rats. However, no such commercial or research system exists that meets all requirements for such an experiment. In this project we describe the (1) system design, (2) system testing, (3) system evaluation, and (4) system implementation of a wireless simultaneous stimulation-and-recording device (SRD) to be used to modulate cortical circuits in an awake rodent animal model.
Library Comment
Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.
Recommended Citation
Ramshur, John T., "Wireless Simultaneous Stimulation-and-Recording Device (SRD) to Train Cortical Circuits in Rat Somatosensory Cortex" (2015). Electronic Theses and Dissertations. 1168.
https://digitalcommons.memphis.edu/etd/1168
Comments
Data is provided by the student.