Electronic Theses and Dissertations





Document Type


Degree Name

Master of Science


Electrical and Computer Engr


Electrical Engineering

Committee Chair

Thomas Edgar Wyatt

Committee Member

Russell Jerry Deaton

Committee Member

Aaron L Robinson


The application of doubly-fed induction generator (DFIG) is very effective in the fast-growing wind generator (WG) market. The foremost concern for the DFIG based WG system is to maintain the transient stability during fault, as the stator of the DFIG is directly connected to the grid. Therefore, transient stability enhancement of the DFIG is very important. In this work, a diode-bridge-type nonsuperconducting fault current limiter (NSFCL) and resistive solid-state fault current limiter (R-type SSFCL) are examined to augment the transient stability of the DFIG based WG system.In simulations, temporary balanced and unbalanced faults were applied in the test system to investigate the proposed NSFCL and the R-type SSFCL transient stability performance. Besides a DC resistive superconducting fault current limiter (SFCL), bridge-type fault current limiter (BFCL) and series dynamic braking resistor (SDBR) are also considered to compare their performance with the proposed NSFCL and R-type SSFCL. These simulations were performed with Matlab/Simulink software. Simulation results clearly indicate that the NSFCL and R-type SSFCL enhances the transient stability of the DFIG based WG. Moreover, the NSFCL works better than the DC resistive SFCL, BFCL and SDBR in every aspect and R-type SSFCL works better than the SDBR in all aspect.


Data is provided by the student.

Library Comment

Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.