Electronic Theses and Dissertations

Identifier

6609

Date

2020

Document Type

Thesis

Degree Name

Master of Science

Major

Physics

Concentration

Materials Science

Committee Chair

Sanjay R. Mishra

Committee Member

Thang Ba. Hoang

Committee Member

Muhammad S. Jahan

Abstract

Template-assisted facile synthesis of tubular Co3O4 microstructures and its electrochemical performance was studied to understand its use as a potential electrode material for supercapacitors. Tubular porous Co3O4 microstructures were synthesized using cotton fibers as bio-template. The as-obtained templated Co3O4 structure inherits the morphology and microstructure of cotton fiber. The electrochemical performance of the electrode made up of tubular Co3O4 structure was evaluated in 3M KOH, NaOH, and LiOH aqueous electrolytes. The large-surface-area of tubular Co3O4 microstructure has a noticeable pseudocapacitive performance with a capacitance of 401 F/g at 1 A/g and 828 F/g at 2 mV/s, a Coulombic efficiency averaging ~100%, and excellent cycling stability with capacitance retention of about 80% after 5,000 cycles. Overall, the tubular Co3O4 microstructure displayed superior electrochemical performance in 3M KOH electrolyte with peak power density reaching 5,500 W/kg and energy density exceeding 22 Wh/kg. The superior performance of the tubular Co3O4 microstructure electrode is attributed to its high surface area and adequate pore volume distribution, which allows effective redox reaction and diffusion of hydrated ions. The facile synthesis method can be adapted for preparing various metal oxide microstructures for possible applications in catalysis, electrochemical, sensors, and fuel cell applications.

Comments

Data is provided by the student.

Library Comment

Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.

Share

COinS