Electronic Theses and Dissertations
Identifier
6627
Date
2020
Document Type
Thesis
Degree Name
Master of Science
Major
Electrical and Computer Engr
Committee Chair
Eddie Jacobs
Committee Member
Lan Wang
Committee Member
Alfredo Ramirez
Abstract
The discrimination between cotton and the invasive Palmer amaranth is economically important, as these weeds take resources away from cotton, resulting in diminished crop yield. There has been research into the discrimination between species of plants, including cotton and Palmer amaranth, that focused on the use of aerial imagery and the derived Red, Green, and near-infrared (RGN) spectral data fed into a machine-learning algorithm to classify these plants based on the measurable differences in their spectral characteristics. We believe that this research can be expanded upon by using geometric data derived from aerial imagery to classify cotton and non-cotton plants based on their physical characteristics. This would also allow for accurate geolocation of the classified weeds for later removal. An autonomous drone with a GPS and a RGN camera attached will take a predetermined path to scan a crop field, and the resulting videos will be divided into individual frames. From these frames, both the RGN spectral data and a 3D point cloud can be derived. The RGN data and the geometric data will be fed into a machine learning algorithm for classification between the cotton and non-cotton plants, and then additional processing will be done to geolocate the weeds. With this additional information for classification, it is hoped that the discrimination between cotton and weeds can be more accurate, and the location of the weeds can be more exact.
Library Comment
Dissertation or thesis originally submitted to the local University of Memphis Electronic Theses & dissertation (ETD) Repository.
Recommended Citation
Simmers, Brandon Richard, "Classification and Geolocation of Cotton and Palmer Amaranth Using Spectral and Geometric Data" (2020). Electronic Theses and Dissertations. 2121.
https://digitalcommons.memphis.edu/etd/2121
Comments
Data is provided by the student.