Electronic Theses and Dissertations

Date

2019

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Computer Science

Committee Chair

Vasile Rus

Committee Member

Scott Fleming

Committee Member

Deepak Venugopal

Committee Member

Andrew Olney

Abstract

Bloom (1984) reported two standard deviation improvement with human tutoring which inspired many researchers to develop Intelligent Tutoring Systems (ITSs) that are as effective as human tutoring. However, recent studies suggest that the 2-sigma result was misleading and that current ITSs are as good as human tutors. Nevertheless, we can think of 2 standard deviations as the benchmark for tutoring effectiveness of ideal expert tutors. In the case of ITSs, there is still the possibility that ITSs could be better than humans.One way to improve the ITSs would be identifying, understanding, and then successfully implementing effective tutorial strategies that lead to learning gains. Another step towards improving the effectiveness of ITSs is an accurate assessment of student responses. However, evaluating student answers in tutorial dialogues is challenging. The student answers often refer to the entities in the previous dialogue turns and problem description. Therefore, the student answers should be evaluated by taking dialogue context into account. Moreover, the system should explain which parts of the student answer are correct and which are incorrect. Such explanation capability allows the ITSs to provide targeted feedback to help students reflect upon and correct their knowledge deficits. Furthermore, targeted feedback increases learners' engagement, enabling them to persist in solving the instructional task at hand on their own. In this dissertation, we describe our approach to discover and understand effective tutorial strategies employed by effective human tutors while interacting with learners. We also present various approaches to automatically assess students' contributions using general methods that we developed for semantic analysis of short texts. We explain our work using generic semantic similarity approaches to evaluate the semantic similarity between individual learner contributions and ideal answers provided by experts for target instructional tasks. We also describe our method to assess student performance based on tutorial dialogue context, accounting for linguistic phenomena such as ellipsis and pronouns. We then propose an approach to provide an explanatory capability for assessing student responses. Finally, we recommend a novel method based on concept maps for jointly evaluating and interpreting the correctness of student responses.

Comments

Data is provided by the student.

Library Comment

Dissertation or thesis originally submitted to ProQuest

Notes

embargoed

Share

COinS